N -0
///J)/O/

NASA Contractor Report 191559
IS4

TECHNIQUES USED FOR THE ANALYSIS OF
OCULOMETER EYE-SCANNING DATA OBTAINED
FROM AN AIR TRAFFIC CONTROL DISPLAY

Daniel J. Crawford
Daniel W. Burdette
William R. Capron

o
~N
0
- »
N f
] [ad
< (V]
o c
4 =
LOCKHEED ENGINEERING & SCIENCES COMPANY
Hampton, VA
zZ v
o <« 9
w U
w X €
>ax 0 @
Contract NAS1-19000 huE T
wWw >n
December 1993 CeYoX
FOWL D
& a C
ZDO=0n N
TOAw
VOraQoD
W @ €
—u O d-
O Cw
< O
~n - 0
g Z C
[Ta N 7o I Y« INY 3
n> uomno
O c
o~§::unu¢
National Aeronautics and ~Z e @
Space Administration c:g < § 'i' 8 -
Langley Research Center Ll, uIJ 3 : 2 -~
Hampton, Virginia 23681-0001 LN =X e
%] ! vn
oW O W
ZO> a0
o U)

0198101

G3/04

TECHNIQUES USED FOR THE ANALYSIS OF
OCULOMETER EYE-SCANNING DATA OBTAINED
FROM AN AIR TRAFFIC CONTROL DISPLAY

Table of Contents

Symbols, Abbreviations, and Definitionsveeevonoooooooooooooooonn, ii
SUMMATY ..ottt saessssssssssssesessssssnesssesesss s emesees e 1
LO INtrOQUCHION...cuceeccsecisincneenreeseeesnssessesesesssssssssessassasssosssessemsen s 1
2.0 SyStem OVerviewccrveueeneeeenessesscsscssesenssssessssssessssssssesseses s e 2
2.1 Equipment, Environment, and Procedures........................ 7

2.1.1 Measuring eye scanning behavior in glass display
(CRT) environments.........eeceeeeemeneneveeveneneeeessossenn. 7
2.1.2 PPI Alignment Templateooeeeuveeeeeeveeeooeeeossons 8
2.1.3 Video Alignment........oueeeeeereveererereneneseeesoeesoeeessoons 10
2.1.4 Subject eye calibrationceceeeeeeveeeeevemevevnon 10
2.1.5 Visual Area of INterestoceuvvueeeeeeevereeeeeseosseosson 11
2.2 Quick Look Capability.......ccoveeeeereveeenenrersersnenensessssssssessn 13
2.3 Recording, Synchronizing, and Filtering the Data........... 16
2.4 Target Identification............cueeeeerveveeneeenseeeeeeeseeoeeess 19
2.5 Cross Check SCANNINEoucceririieieeeeeereseeeeeeeeee st 20
2.6 DiSPlay Zones....ueecreninieeicreeeeseessnseesssessess s 29
3.0 DeScription of StatiStiCs........eevvuvreeecrerseneeecrereeesessessssssesessess s 29
4.0 Major Results and Concluding Remarks............o.oeoeeeeoeooooooosonons 44
RefErencCes ...ttt eeeseessssessesss s s e s se s 45

Appendix A Data File Record Descriptors
Appendix B Program Block Diagrams
Appendix C Data Reduction and Analysis Source Code

Symbols, Abbreviations, and Definitions

ATC
ANOVA
CCSs
CSM
DICE
FAA
FAF
FASA
FPL
GM

kts
MAN
MOTAS
NASA
nmi

P

PLSD
PPI
TIMER

TRACON
VOR

170

210

air traffic control

analysis of variance

cross check scans

centerline slot marker display format

direct course error (time) countdown display format
Federal Aviation Administration

final approach fix

final approach spacing aid

full performance level

graphic marker display format

knots

manual/ARTS III display format (no FASA)
Mission Oriented Terminal Area Simulation
National Aeronautics and Space Administration
nautical mile(s)

level of significance for treatment effect in ANOVA
protected least significant difference

ATC station plan position indicator

traffic intelligence for the management of efficient runway
scheduling

terminal radar approach control

VHF omnidirectional radio range
170 knot pattern speed procedure
210 knot pattern speed procedure

Summary

A dynamic real-time simulation study was
conducted at NASA-Langley to gather comparative
performance data among three candidate final-
approach spacing aid (FASA) display formats. That
study, formally documented in references 1 and 2,
included an analysis of subject-controller eye scan
data recorded from an oculometer system. The
FASA display study was different from earlier
applications of the oculometer system because the
gaze objects (e.g., aircraft) were moving. Most past
NASA oculometer applications involved a fixed-
position display such as cockpit instruments. In the
FASA study, individual objects on the screen were
associated with a lookpoint. This paper describes
some of the methodology used in the eye scan por-
tion of the FASA study. Synchronization of oculo-
meter data with simulation data is discussed as is
data filtering. Algorithms for identifying lookpoint
targets and for identifying cross check scans are
described. Flow charts, block diagrams, file record
descriptors, and extensive source code are included.
Three general categories of statistics are examined:
total time spent looking at screen objects, average
length of lookpoint fixations for a given controller
and display format, and cross check scans. The lat-
ter is a back and forth eye scanning sequence
between two display objects. Three sets of tables
are provided for each of the three categories of sta-
tistics. In addition to overall numbers, breakdowns
by type of object and screen zone are also reported.
The tables indicate the lookpoint measures defined
for the FASA study and are presented for possible
oculometer use in future ATC display studies or
other displays employing an oculometer. Some of
the methodology reported here may be applied to
other studies with individual moving elements.

1.0 Introduction

The oculometer facility at the NASA Langley

Research Center was recently used in support of an
air traffic control final approach spacing aid (FASA)
display evaluation study. The study, documented
in references 1 and 2, compared the relative merit
of three proposed automation-aid supplements to
the final approach radar display in addition to the
baseline manual ARTS III format (MAN). The
FASA display formats evaluated were extended-
runway-centerline slot markers (CSM), direct
course time error countdown (DICE), and graphic
marker (GM). Several methods such as analysis of
aircraft separation and delivery precision, control-

ler response time to automation suggested vectors,
and controller workload were used to assess the
effectiveness of the proposed display changes. An
additional evaluation technique used was an analy-
sis of the eye scanning behavior of the subject-
controllers. The results of the eye scanning behav-
ior analysis were consistent with results from the
other methods. This paper is concerned with
documenting the techniques used in the FASA
study to do eye scanning behavior analysis and
with the programs that were used to reduce and
analyze the data.

There are several reasons for documenting the
work. First, it was unusual in oculometer applica-
tions for the gaze object (e.g., an aircraft on the dis-
play) to be moving. Normally the display is fixed
for a test involving an oculometer. Thus, software
had to be written to accommodate moving objects.
References 1 and 2, because of space limitations
and lack of general interest, does not include the
details of the work. Readers interested in eye
scanning analysis may wish, however, to see a more
in-depth discussion. Second, an experiment using
complex simulation equipment and full perform-
ance level FAA controllers will be difficult and
expensive to reproduce, but it was possible that the
FASA eye scan data would be examined again
someday for related or unrelated studies. If so, this
document could be very helpful. Third, there was
latent interest in using the oculometer in planned
air traffic control studies. Since new oculometers
were being installed at both NASA Langley and the
FAA Technical Center, it was expected that some of
the lookpoint measures and methodology described
in this paper will be carried over to future studies
using the new equipment.

The programs written for the FASA study were
in compiler basic (Microsoft Quick Basic) and were
executed on a desktop computer. The file naming
convention used throughout this paper was as fol-
lows: The data file name consisted of an eight
character run identifier followed by a period and a
three character file type designator. For example,
the file DB16DC21.DAT was a .DAT (data) file, run
number 16 for subject DB. The run was a DICE
display format, 210-knot approach-pattern-speed
test. The .DAT file is written by the oculometer
data collection computer during the test and con-
tains the lookpoint coordinates and other data.
Throughout this paper files are referred to by their
suffixes such as .SCN, .DAT, .ACP, MRG, and
.CCS. The data record descriptors for those files
are discussed and illustrated in appendix A. The

description, when appropriate, includes references
to the source code that was used to read or write
the file. The first file discussed in appendix A is the
_CCS file, i.e., cross check scan. Usually, there are
96 individual files of any type. That was so because
there we~e 12 controller subjects, each testing four
display formats at two different pattern speeds.
Understanding this convention is important to
understanding this paper. The deceptively simple
block diagrams presented in appendix B rely heav-
ily on this convention. Those block diagrams,
which show the relationships between the files and
the processors (or programs), were used often dur-
ing the study and proved themselves to be quite
valuable.

Another convention that should be explained
for clarity is that most of the programs are list
driven. That is, they run from a list of files (a file
itself) and don't stop until all the files on the list are
processed. In appendix B, this list file is usually
shown above the processor. Normally the list con-
tained all the runs for one test condition. At times
as many as three computers, each with its own list,
were used in parallel to process the data more
quickly.

The intent of this paper is that it will aid a
data analyst faced with a task similar to that
encountered in analyzing the FASA oculometer
data. A description of the oculometer equipment,
environment, and procedures are provided. The
logic of certain algorithms, which are considered
important but complex, are discussed in the body of
the paper. Statistics from the FASA study omitted
from reference 1 and 2 are also included here.
Those are given, not to support the conclusions of
the FASA study, but to illustrate the techniques
used. Source listings for the programs included in
appendix C and the block diagrams in appendix B
make it easier to understand how the data was
processed and where to look in the source code for a
given function. The record descriptors in appendix
A will be especially helpful for anyone re-examining
the FASA data.

2.0 System Overview

A detailed description of the development of
the Langley oculometer system, along with its
installation and operating procedures can be found
in Appendix A of reference 3. The oculometer facil-
ity computes and stores a time history of eye-scan-
ning events. The block diagram (figure 1) shows

the components of the system. The oculometer
(blocks 1-7 of figure 1) projects a collimated near-
infrared beam of light into the test subject's eye.
The system depends on algorithms that can com-
pute a lookpoint, if given the relative position of two
eye reflections. The computer compares the large
backlighted pupil reflection to the much smaller
and more intense corneal reflection. Using split
image techniques the system directs the illuminat-
ing beam through the same tracking mirror system
that collects the reflected images. It uses the
angles of the two automatic tracking mirrors and
the manually controlled focus of the eye-camera
optics to correct the lookpoint calculation for subject
head position. The oculometer electro-optic head
(blocks 4 and 5) is located directly in front of the
subject (block 8) and just below the simulated radar
display as shown in the photograph in figure 2.
This location is well outside the final controller's
normal scan area, which is concentrated around the
center of the display. The subject can detect only a
dull red light in the head's mirror system. For the
purposes of calibration and monitoring real-time
performance, the system mixes (block 9) the com-
puted lookpoint position with the plan position indi-
cator (PP) video signal that is nonobtrusively
recorded (blocks 10 and 11) from a repeater display
shown in figure 3. The resulting combined display
(block 12) contains a small circle of light represent-
ing the lookpoint as it moves among the display
symbols. An observer can monitor in real time both
system and subject performance by viewing the
combined signal, and a video recorder (block 13)
stores the signal on tape for post run analysis.

The oculometer control and data processing system
is located in the Human Engineering Methods
(HEM) laboratory one floor below the mission ori-
ented terminal area simulation (MOTAS) facility
used to represent a TRACON facility in the FASA
study. The MOTAS facility is documented in refer-
ence 4. Figure 4 is a photograph taken in the HEM
laboratory. In the background corner sits a display
monitor that has the mixed video with the control-
ler PPI display and the controller's lookpoint super-
imposed. The three 5-inch video monitors in front
of the main system operator (in the foreground) are
used for system monitoring and control. Details of
their displays do not show well in the photograph.
The left monitor is a duplicate of the mixed
PPI/lookpoint display. The center monitor shows
the bright corneal reflection on the much larger and
darker pupil reflection in the background. The
monitor on the right displays an image of the

Lookpoint

Eye Position
Eye Reflections

- =

e

E

S

(o]

5
Scene|Video s

=

Head|Video
Optical
Visual
| Visval_ =M Pseudo Pilots
ATC PP Simulation

Computer

ATC PPI
Repeater

Figure 1. Operational block diagram of the NASA Langley oculometer facility
interaction with the TIMER ATC simulation.

(1 2anSy u1 g pue ‘p ‘g syoo|q) uonisod
peeq 30afgns SULI0)IUOW 0] BIIWED 09PIA PUE WSIUBIIW o13d0-013009]0 1939WO[ND0
8} YIIM wonels DLV porenuuls e uimoys AN10e) SYLOW 213 Ul udie) ydeadojoyd ‘g oan3ig

ORIGINAL PAGE
BLACK AND WHITE FPHOTOGRAPH

‘syurodj00[Y)Im paxIw 0apiA aq 03 (I 2anJy ur [Pue 0] syo0|q) Aedsip)LV oI
Jo [eudis oapla Funeioual 10j BISWED 0PIA puUB Awldsip 19383daa [4J Jo ydeasojoyqg g sangiyg

GRAPH

')

BLACK AND

CELEUNONS WS ‘ibee = K
s ety Ao

Figure 4. Photograph taken in the HEM laboratory showing the oculometer control
and data processing system stations.

subject's head captured by the head position camera
shown in figure 2. The operator uses this camera to
observe the subject and, also, as an aid to recapture
the subject's eye after losing track. The signal on
the television waveform oscilloscope above the
monitors is the sweep from the eye-camera used to
determine the relative position of the two reflec-
tions. The central narrow peak indicates the cor-
neal reflection. The broader peak at about half-
voltage represents the pupil reflection, and the low
voltage baseline represents the rest of the eye,
including lids and lashes, all of which are adjusted
to the video black reference level. By keeping track
of video sweep count and timing when voltages
cross specified levels, the system determines the
center of each of the two reflections and, thus, their
relative position on the camera vidicon.

Figure 4 does not include the oculometer com-
puter. However, it does show several of the digital
readouts and control inputs for the oculometer
computer. Those include potentiometers, a stan-
dard typewriter keyboard, a joystick (under the
operator's right hand), and a pushbutton (in the
operator's left hand). Their principal use is for pre-
run calibration, but the operator also uses them to
dynamically compensate for the subject's posture
adjustments. The mirror tracking is automatic and
works well. The joy stick is a manual augmenta-
tion for the mirror tracking. The operator uses it to
override the search algorithm when the eye is out-
of-track and the system is trying to reacquire. He
does not use the joy stick often but when used it
speeds up reacquisition considerably. The fastest
reacquisition involves the use of the pushbutton
shown in his left hand which instantly returns the
mirrors to a predefined nominal eye position. That
technique is always tried first in reacquiring the
eye, because most individuals performing a visual
monitoring task often return to the same position
after briefly rotating their heads to talk, read, or
type on a keyboard. The operator controls the mir-
rors, the eye-camera focus, and collimated infrared
beam intensity. He also determines and enters sys-
tem parameters during calibration including
parameters to adjust for inter-subject differences in
corneal curvature.

The micro computer in the background of fig-
ure 4 collects and stores the visual events in real
time in its random access memory (RAM). The
computer contains a 16-channel analog-to-digital
conversion circuit board that acquires eye scanning
signals from the oculometer system and timing sig-
nals from the mainframe simulation computers. It

should be noted that the mainframe computers are
not used for eye scanning data collection during
FASA because of the processing load required to
operate the traffic intelligence for the management
of efficient runway scheduling (TIMER) simulation
program. At the end of each run the operator cop-
ies the records stored in RAM to a disk file for long
term storage. Each record spans a variable time
duration that is an integer multiple of the oculome-
ter sample period (30 samples per second). There
are four data fields per record containing lookpoint
coordinates (2 dimensions), pupil diameter, and
duration of the event. For an out-of-track event,
the system records lockpoint coordinates as zero
and stores a status code in the pupil diameter field.
Once per simulation update, ie., every four sec-
onds, the system stores one other field on a second
file. That field contains the sequence number of the
visual event last completed as the ATC simulation
interval started. The data reduction algorithms use
this information later for synchronizing the
recorded simulation data with the oculometer data.

2.1 Equipment, Environment, and
Procedures

2.1.1 Measuring eye scanning behavior in
glass display (CRT) environments

One of the greatest challenges presented by
the FASA study for the eye scanning data analyst
was that of answering the synchronization ques-
tion, "What target was presented at location x,y at
elapsed time 37:15 in the run?" (The '37:15' was
chosen for illustration, only.) However, for the ocu-
lometer operator there was a more fundamental
challenge underlying concerns for data quality, e.g.,
"What display feature was actually located 3 inches
to the left and 2 inches below the center of the
PPI?" In this type of visual environment all targets
were behind glass. The oculometer system was
simply measuring, in effect, where on the glass the
subject was looking. If the runway threshold of 26L
(the expected target) was actually being displayed
at (-3, -2) inches then the data output was correct.
If the PPI content had been shifted or rescaled,
however, by a software offset or an electronic bias,
the oculometer output would have been compro-
mised. In this example, the subject actually may
have been looking at the point (-3, -2) inches from
the center, but some other display feature could
have been displayed at that location because of a
display error.

The oculometer was designed to report the
lookpoint of a subject on a fixation plane defined
relative to the face of the electro-optic head mirror
box, or oculometer port. If the mirror box were to
move to another location, the output data would be
in error h-cause the eye rotations would be viewed
from - different observation point. Similar errors
would occur if the features on the fixation plane
moved to locations different from those previously
described in the oculometer program geometry. In
earlier studies at LaRC involving aircraft cockpits
with conventional fixed-position instrumentation,
the fixation plane was clearly defined by the sta-
tionary position of the visual targets. Now, with
the advent of glass cockpits, the fixation plane can
contain many possible display configurations, each
with its own features and relative locations.

The air traffic control environment has been a
glass environment for several decades, since the
first use of radar displays for monitoring aircraft
locations. Because the PPI made up the entire vis-
ual field of the final approach controllers in this
study, the locations of all visual targets, including
both fixed features and moving air traffic symbol-
ogy, depended on the software driving the display
as well as such hardware factors as control knobs
and electronic circuit stability. In the Langley
MOTAS facility, for example, the Evans &
Sutherland CRT provided control knobs for adjust-
ing display height and width and horizontal and
vertical gains. An access cover was placed over
those knobs during the FASA study to prevent
rescaling and repositioning of the display features
by the controllers, but other means of display
alignment was necessary in order to insure the
accuracy of PPI geometry for eye scanning data col-
lection and analysis.

2.1.2 PPI Alignment Template

Figure 5 illustrates an alignment template
which was designed for the FASA experiment and
used at the beginning of each test session in order
to insure that the fixation plane description of the
PPl was accurate and consistent throughout the
study. Each day the template was placed directly
on the face of the final controller's PPI to check for
proper positioning of the fixed features on the dis-
play. Exact placement of those features on the
template was accomplished by direct measurement
of the PPI during static display of stationary ele-
ments, including the Denver Stapleton runways,
the final approach to runway 26L out to 20 nmi, the
final approach fix (FAF), the final controller's air-

space (referred to at Denver as the dump region),
the Denver VORTAC (DEN), the airspace intersec-
tions FLOTS and WIFES, five nmi range-rings, and
the outlines of the four approach corridors. The
template also showed the positions of 25 aircraft
placed at intervals of 5 nmi and arranged in a grid
surrounding the final approach course. Each of
those aircraft appeared on the template as an F
connected by a leader to a representative ARTS III
data block. This display of aircraft provided an
array of visual targets for the subject controllers
during oculometer calibration. An additional fea-
ture of the template was a reference axis system,
shown as dotted lines, to allow rotational alignment
with the Evans & Sutherland CRT enclosure.

After measurements were completed the template
was plotted on clear acetate using computer-aided
design and drawing (CADD) software. An axis
transformation program was written to quickly
convert FASA display coordinates to oculometer
output coordinates. The conversion process, which
included axis translation, rotation, and scaling, con-
firmed the physical PPI display location of each
fixed feature or aircraft target generated by the
simulation computer. In addition, the oculometer
output voltages for each target were also confirmed.
since they were scaled such that 1 volt = 1 inch.
The simulation geometry was based on an axis sys-
tem centered at the airport surveillance radar
(ASR) site and represented aircraft locations in
nautical miles north and east of that point. The
origin appeared on the template as a small dot just
north of the middle of runway 26L. The oculometer
reference origin was located along the final
approach course at a range of 10 miles, and the
data output coordinates were represented in inches
to the right and above that point (See figure 6 for
the display area covered by the oculometer.).
Relative to the oculometer axis system the FASA
origin was translated 5.04 inches to the left and 0.9
inches below the oculometer origin. The 20 nmi
final approach course on the PPI measured 9.625
inches, which resulted in a scale factor of 1 nmi =
0.48125 inches. While the oculometer axes were
physically aligned with horizontal and vertical sur-
faces in the MOTAS facility, the FASA display axes
were rotated counterclockwise 12 degrees. This
rotation was the sum of the Denver local magnetic
variation of 10 degrees east and a slight bias in the
display CRT of 2 degrees in the same direction. In
order to align properly with the PPI, the completed
template contained the 12 degree rotation and the
measured scale factor and axis translation. Thus

Figure 5. ATC PPI alignment template for the FASA study.

the relationship between the two axis systems can
be represented by the equations:

XOCULO = SF*(X*SIN(A) + Y*COS(A)) - XOFF
YOCULO = SF*(X*COS(A) - Y*SIN(A)) - YOFF

where the variables XOCULO and YOCULOQO repre-
sent the horizontal and vertical oculometer output
in inches (volts); the variables X and Y represent
FASA coordinates north and east of the ASR in
nautical miles; the constants XOFF and YOFF are
the coordinates of the FASA axis system origin, in
inches, as measured from the oculometer system
origin; the constant SF represents the scale factor,
0.48125 nautical miles per inch; and the constant A
represents the angle of rotation, -12 degrees
(negative because the angular rotation is clockwise
when going from the FASA system to the oculome-
ter system).

After the display features were checked each
day for proper positioning (scaling, offset, and rota-
tion), the geometric relationship between the PPI
visual targets and the oculometer port was con-
firmed. Then, scene video was aligned.

2.1.3 Video Alignment

Figure 3 shows the remote scene camera and
PPI repeater display used for the FASA study. This
use of a scene camera which was remotely located
outside of the main test area was a first at LaRC.
In previous Langley oculometer installations the
scene camera was typically mounted over the sub-
ject's shoulder which caused geometric distortion in
the view, as well as occasional problems with scene
obstruction or camera disturbance by the subject.
However, by referencing the oculometer data out-
put to video from a repeater PPI rather than the
subject-viewed PPI, several benefits were realized.
First, the scene camera view remained physically
undisturbed and unobstructed during the 70-min-
ute test runs, because the camera was located out-
side of the active test area. Second, a true perspec-
tive of the PPI was made possible by positioning the
camera squarely in front of the display (see figure
3). Third, the potential for wire clutter in the con-
troller workspace was reduced by routing associ-
ated video cables into a separate part of the
simulator room.

During video alignment the PPI features
viewed by the remote scene camera were matched
to their geometrical counterparts in the oculometer
computer. As described in reference 3, the com-
puter generated a series of points corresponding to

10

measured features on the static display, including
but not limited to the Denver VORTAC, the
threshold of runway 26L, the FAF, and the four
corners of the dump region. These points appeared
as white dots on the oculometer control panel scene
monitor (figure 4) and were fitted to the video scene
by adjusting electronic potentiometers to correct for
distortions in vertical and horizontal gain, bias, and
cross talk. This procedure allowed the scene moni-
tor, with its superimposed dots, to represent the
actual data output of the oculometer system. Since
the video information captured by the remote scene
camera was aligned with corresponding points
stored in the computer, any geometric distortions
were canceled out. Data accuracy, therefore, was
not compromised by using the PPI repeater monitor
and remote scene camera.

2.1.4 Subject eye calibration

Prior to the first practice run by each subject
controller, eye calibration was accomplished by
directing the subject's gaze to each of 17 of the air-
craft arranged in a grid around the final approach
course. (Only 17 of the 25 aircraft generated for
calibration were displayed within the 10-inch
square visual area of interest.) After the targets
were scanned, the oculometer operator manually
adjusted linearization constants in the program to
correct for errors in gain, offset, or pattern align-
ment, including distortions in vertical slant, hori-
zontal tilt, pincushion, and curvatures along verti-
cal or horizontal arcs. The test subject was allowed
to look around freely and relax during the brief
time adjustments were being made. The calibration
targets were then re-scanned, and the process
repeated until a reasonable result was achieved.
Because of the potential for subject boredom leading
to a poor calibration, the total time spent on the
process was usually less than 3 minutes. Nearly
two decades of eye scanning research at LaRC have
demonstrated that this style of calibration proce-
dure, although necessary, should be performed
quickly and efficiently to permit the subject to move
on to the task of interest. Controller interest and
task engagement were high during the practice and
data runs. The result was a more consistent look-
point output and better calibration than were pos-
sible during the brief, but somewhat tedious man-
ual calibration. Excellent final calibration results
were achieved by fine tuning the distortion adjust-
ments on the fly during the first practice run. The
resulting calibration constants were saved for each
subject and used for later test sessions.

2.1.5 Visual Area of Interest

Figure 6 shows the area of the PPI display cov-
ered by the oculometer used in the FASA study.
Several tradeoffs were considered prior to the deci-
sion to restrict coverage to a 10-inch square.
Sources of errors in eye scanning measurements
can be grouped into three categories: 1) system
errors, 2) operator errors, and 3) test subject eye
physiology. They will be discussed individually, but
the combined effects of the errors can reduce the
value of a measurement technique to the point that
questions relevant to the experiment cannot be
adequately answered. The key to maximizing the
utility of any measurement lies in examining the
working hypotheses for a particular experiment. In
the FASA study, it was necessary to decide what
questions about eye scanning behavior were most
relevant to the task of controlling aircraft in the
final approach area. The three lookpoint measures
selected for analysis included track time, average
dwell time by object type, and number of cross
checks (reference 1). Most of these measures
required high-resolution data quality within the
dump region even at the expense of lack of coverage
at the edges of the 20-inch PPI. The task being
observed depended heavily upon aircraft control
within the dump region, and aircraft delivery-time
accuracy was the primary performance criterion.
The working hypotheses frequently demanded dif-
ferentiation between the aircraft symbol and its
data block, thereby requiring a lookpoint resolution
of less than 0.5 inches which approached the opera-
tional limit of the Langley oculometer.

Each of the following three sources of meas-
urement errors imposed data collection and analy-
sis tradeoffs for the FASA project:

1) System errors. Each output channel of the
oculometer has a range of 10 volts, as the output
digital-to-analog converters (DACs) are capable of -
5VDC to +5VDC. Because the equipment is a com-
bination of electronic and optical subsystems, noise
and distortion are inevitable. By covering a larger
visual area, those errors create uncertainty over
larger portions of the data field. For example, if the
electrical noise were on the order of 0.5 VDC, then
lookpoint jitters would be 1/20 the size of each lin-
ear dimension measured, which would be 0.5 inch
in the 10-inch square covered during FASA and 1
full inch for the 20-inch square required to track
the entire PPI. Fortunately, the electrical noise
experienced during this study was much smaller
and, together with the chosen scale factor, resulted

in very slight jitters of the lookpoint. Similarly,
optical and video limitations prevented the distinc-
tion between an aircraft symbol and its data block
when the entire 20-inch PPI was viewed, but it was
easy to distinguish such details when zoomed in to
the 10-inch square shown in figure 6.

2) Operator errors. Although many of the fea-
tures of the Langley oculometer allow for hands off
operation, the system is not totally automated.
Data quality depends on the ability of a human
operator to accurately calibrate each test subject
and to monitor system performance throughout the
entire test. Both of those tasks require high resolu-
tion of the visual targets of interest. For this study
of air traffic control in the final approach area, it
was necessary to differentiate between an aircraft
symbol and its data block, which required a video
image capable of clearly displaying each of these
small features. With the state-of-the-art technology
in television equipment at the time of the study,
this capability was only possible when viewing a
relatively small area of the 20-inch display. Prior
to the start of this project, the Langley oculometer
was operated by scaling to the entire PPI. The
results determined which aircraft was being
viewed, but could not differentiate between the air-
craft symbol and its data block.

3) Eye physiology of the test subject. Individual dif-
ferences in corneal curvature among subjects result
in output nonlinearities, which become progres-
sively worse at larger visual angles from the oculo-
meter port. For that reason, compromises during
calibration must often be made. When operated for
full-scale coverage of the 20-inch display, the sys-
tem often required major adjustments to the lin-
earization constants in order to match lookpoints to
outlying targets around the perimeter. Obtaining
good accuracy for the perimeter targets often
resulted, however, in mediocre accuracy within the
final approach area, or vice-versa. Because the 10-
inch coverage involved a relatively small total vis-
ual angle (approximately 30 degrees for a subject
about 20 inches from the face of the PPI), more pre-
cise calibration was possible during the actual
FASA study. Therefore, errors due to physiological
differences in the test subject eyes were minimized.

2.2 Quick Look Capability

The FASA experiments were run during June
through September, 1991. One of 12 subject-con-
trollers participated each week. The tests took four
days per subject. Each half-day consisted of a

11

12

Figure 6. Area included in oculometer coverage for the FASA study.

session using one of the four display formats with
one of the two approach-pattern speeds. Thus, each
subject participated in eight different display-for-
mat tests (four formats times two pattern speeds)
referred to as treatments. See reference 1 for a
complete discussion of the design of the experiment.
Each recorded test run lasted about 70 minutes. A
large amount of data was acquired in a short time,
which offset the fact that the equipment and per-
sonnel necessary to run this experiment were
expensive and difficult to schedule.

After the experiment was started, it became
apparent that a quick look feedback on the quality
of the recorded data was needed. That is, the data
needed to be tested immediately for quality and suf-
ficiency. Otherwise, subsequent post experiment
analysis might have been handicapped by data defi-
ciencies. The approach taken was to try to expose
any deficiencies early, while more response options
were still available. Since the quick look require-
ment was not foreseen, a program to provide a
quick look capability was quickly developed and
was put into service during the third or fourth sub-
ject-week. That program, QKLOOK.BAS, is
included in appendix C. It was used in conjunction
with the RADAR/lookpoint display combination to
monitor and tune the system.

The FASA quick look methodology is probably
not directly extendible to other studies, since it is
dependent on the equipment and data acquisition
algorithms. Therefore, it will not be described in
detail. However, the concept is directly extendible.

The quick look analysis examined three quan-
tities: the length of time associated with a file
record, the number of times certain events
occurred, and pupil diameter. The following were
all taken from the .DAT file.

Total number of in-track fixations.
Total number of out-of-track records.
Total time of all in-track fixations.
Total time of all out-of-track records.

They were subdivided into three classes of
associated record time: 1) less than or equal to 0.1
seconds, 2) greater than 0.1 seconds and less than
or equal to 0.4 seconds, and 3) greater than 0.4 sec-
onds. In addition, they were considered as a per-
cent of some larger class. For example, one item
monitored was total time during a run for in-track
events of duration greater than 0.4 seconds as a
percent of total in-track time. Another example is

average duration of all in-track events whose dura-
tion exceeded 0.4 seconds.

All of these measurements had to be judged on
a relative basis. Certain runs were thought to be
better than others. Results were compared among
test runs to try to identify a serviceable discrimina-
tor in the statistics that would objectively and reli-
ably indicate if and when the eye-scanning system
was having problems. That approach was not com-
pletely successful. However, it helped the team to
better understand what normal scanning behavior
looked like on the monitors and how much normal-
ity varied among controllers.

For the oculometer system used in the FASA
study, the number of oculometer data records (DAT
file) stored per minute proved to be a simple and
useful parameter that could be easily calculated
while making the run. When that rate was higher
than normal, it alerted the operators that some-
thing might be functioning poorly so that attention
to component performance could be increased. The
parameter seemed to be sensitive to the ability of
the system to track the subject's eye, noise in the
system, and the style and speed of a particular con-
troller's eye-scan pattern. The rate varied greatly
among controllers. The highest average rates were
three times the lowest. Figure 7 illustrates those
differences. The variation among controllers as
opposed to that caused by display format is dis-
cussed in section 3.0.

Figure 8 shows average pupil diameter for the
twelve subjects for in-track records for which dwell
time exceeded 0.4 seconds. Pupil diameter
appeared to be insensitive to the display parame-
ters being studied and was not used at all in the
FASA study.

2.3 Recording, Synchronizing, and Filtering

the Data

This section deals with the mechanics of defin-
ing a fixation and synchronizing it with the
recorded simulation data. The problems themselves
(not necessarily the solutions) have some general-
ity, and in evaluating the results of the study
reported in reference 1, some readers may want to
know the details of the process.

Recording the Data. For this study, data runs
were approximately 4200 seconds long and oculo-
meter samples were taken at a rate of 30 per second
for a total of about 126,000 samples per run. The
time available to process a sample was about 33.3

13

'§700(qNS 1597 VSV 943 10] Pap10031 ajnuim Jod SPI0DDI 19)3WONIO0 JO I3qUInG afuvioau Jo uoswredwo) °L dandrg

0

1ajjoauon-109lang
6 8 L 9 S 14

SIY 012 [

SIM 0L []

spiy 1n04 19AQ abelany ‘ajey Buiplodey

0S

00}

oSt

00¢

0se

0o¢

‘anuj Jod sp1ooay

14

‘suopexy uo| Juranp 1939welp 1dnd-24s a8eiaaw Jo uostaedwo) ‘g eangig

SIM 012 [
SIN 0L} [,

¢l

(e

19jjonuo)-1os8iqng
o} 6 8 L 9 g 14 €

SpU028g H'(< SaWi| jlom(
SPIY 1no4 Jano abelany ‘iejowelq jidng

slajawiIy Ul Jajawelq

15

milliseconds. Because of the large number of sam-
ples, the limited size of random access memory in
the data collection computer, and relatively slow
hard disk access time, the researchers decided to
preprocess the data. That approach decreased the
number of records to be saved and allowed the data
to be kept in primary memory until the end of the
test, when it was stored on the disk for post-
processing.

The preprocessing consisted of combining
sequential samples into a single longer sample. For
example, any number n of consecutive out-of-track
samples were combined into a single sample of
length n before being stored in the appropriate in-
memory arrays. The occurrence of an in-track
sample caused the storage of a previously accumu-
lating out-of-track sample-sequence. Likewise, an
out-of-track sample caused the termination and
storage of an accumulating in-track sequence, i.e., a
fixation.

Another part of the data compression process
deals with the transition from one in-track
sequence (fixation) to another. The following fac-
tors were used to determine the occurrence of a
transition. The lookpoint position of a sample was
compared with the preceding position. The look-
point position of the next sample was compared
with the average of the first two, etc. For each suc-
ceeding sample the lookpoint position was com-
pared with the previous running average of look-
point positions. If the distance between them was
greater than a specified threshold (1 inch in the
FASA study), the accumulated sequence was stored
and a new fixation sequence was started.
Otherwise, the running average was updated to
include the present sample, and the sequence con-
tinued uninterrupted. This data compression prior
to recording, although necessary, was of course
irreversible and, therefore, added to the criticality
of the acquisition process. It should be noted that
the newer oculometer systems are not faced with
the above data storage restrictions. In those sys-
tems, access to the raw data is provided for any
post-processing that might be desired.

When an in-track sequence was stored, its
lookpoint position was the average of the sampled
positions. The pupil diameter was recorded as an
average of the pupil diameters for the included
samples. The duration of the sequence is the num-
ber of samples included multiplied later by 1/30
second. The two files created at the end of each test
are referred to as the .DAT file and the .SCN file.

16

Here as elsewhere in this paper, a file type will be
referred to by its suffix in order to minimize ambi-
guity. There are 96 files of each type. Their file
names identify 1) the controller subject, 2) the
FASA display format, 3) the approach-pattern
speed, and 4) the run number. For example, a file
might be named MC12MN21.SCN indicating the
210 manual run numbered 12 by subject MC.
Using this convention (file type suffix), one can find
the data record descriptor for the file type in
Appendix A and a block diagram describing how the
file type is processed in appendix B. Details (source
listings) of each processor are given in Appendix C.

Each data record in the .DAT file is composed
of four 2-byte integers: the x and y screen coordi-
nates, the pupil diameter, and the number of
included samples. Out-of -track records are identi-
fied by a pupil diameter of zero. The number of
records in the .DAT file, for a given length of time
and treatment, varies significantly among subjects.
For all 96 data runs, the average number of records
in the files is 11,234. Since the runs lasted
approximately 4200 seconds, this indicates a rate of
about 2.7 records per second. The 8 run average
per controller varied, however, from a low of 6,173
records to a high of 17,076 records. This large dif-
ference between subjects was easily observable dur-
ing the runs. The lookpoint motion would appear
slow and deliberate for one subject, but for another
it would appear very rapid. The filtering described
later decreased the variation across subjects, and
the use of the repeated measures analysis of vari-
ance (ANOVA) prevented the differences between
subjects from masking out the cross treatment
variations of interest.

Synchronizing. During the test runs, the
dynamics of the aircraft being simulated, their rela-
tive geometry, and the graphical interface to the
pseudo pilots and controller subject were being
computed on a large mainframe computer. The
computer supports, and is tightly coupled to, the
MOTAS facility. This large and sophisticated real-
time simulation produces a time-history file (ACP)
that gives the position of all the aircraft on the con-
troller's display every four seconds, a typical sweep-
rate of an airport surveillance radar. In order to
determine what the subject is looking at during any
particular fixation, the frame (a set of contiguous
records) of the .ACP file that describes the display
at the time the fixation was recorded must be
found. Then, the frame is searched for an object
whose coordinates are sufficiently close (within 0.57
inches) to the lookpoint coordinates. Establishing

the correspondence between each fixation and a
particular display frame is referred to as synchro-
nizing the .DAT file to the .ACP file. The search for
a lookpoint object is conducted later, after the data
is filtered, but the method used to synchronize the
files requires that the synchronization must be the
first step. It must precede any deletion or combin-
ing of records on the .DAT file.

The .SCN file is used to affect the synchroniza-
tion of the fixation file with the time history file. At
the beginning of each simulation update (simulated
radar sweep), the simulation causes a bit to be tog-
gled in the oculometer recording computer. This, in
turn, causes the record number of the last DAT
record stored to be written to the .SCN file (in-
memory array). The single integer on the .SCN
record is a pointer to a record on the .DAT file. The
SCN record number or ordinal indicates time
elapsed in the simulation and is in itself a pointer
to a frame on the .ACP time history file. For exam-
ple, the 10th record on the .SCN file corresponds to
the 10th frame on the .ACP file and was written at
36 seconds of elapsed time (The first record was
written at time equal to zero, the second record was
written at an elapsed time of 4 seconds, etc.). The
algorithm for synchronizing the .DAT and .ACP
files determines which records of the .DAT fixation
file correspond to frame i of the .ACP file based on
the pointers contained in records i and i plus one of
the .SCN file. For example, if record 500 of the
.SCN file contains the integer 7123 and record 501
contains the integer 7135, this indicates that record
numbers 7125 through 7136 on the .DAT file corre-
spond to display frame 500 on the .ACP file, which
was recorded at an elapsed time of 1996 seconds.
This algorithm is implemented in the subroutine
FIXPOINTER, which is part of the processor
FIXPOINT listed in Appendix C and shown graphi-
cally in Appendix B. The processor reads the .DAT
and .SCN file and assigns a frame in the .ACP file
to each record on the .DAT file. The resulting .DT1
file is the same as the .DAT file except that each
record has an added field, which points to the cor-
responding frame on the .ACP file. Because the
ACP file has a complex structure with a variable
record size and a variable number of records per
frame, it was indexed by the .IDX file, which was
produced by the CRISIDX process. Thus, the
pointer in the .DT1 record references a record
number in the .IDX file, the contents of which point
to the first byte of the appropriate frame in the
ACP file. The .DT1 file is synchronized. It is one
of several intermediate files produced on the way to

the final .MRG file, which contains both a descrip-
tion of each fixation and of the display object of the
fixation as well as the distance between lookpoint
and object.

The synchronizing algorithm is based on the
following logic. Record i of the .SCN file points to
record m of the .DAT file and record i plus one of
the .SCN file points to record n of the .DAT file.
When record i of the .SCN was recorded, .DAT
record m was already complete and record m plus
one was already started. Therefore, both of those
records should be assigned to a previous frame of
the .ACP file. This would include records 7123 and
7124 in the example above. The records m plus 2 to
n plus 1 are assigned to the current frame i of the
.ACP file, records 7125 through 7136 in the exam-
ple above. In a case where n equals m, no .DAT
records are assigned to .ACP frame i. If n equals m
plus 1, then only .DAT record n plus 1 is assigned
to the current frame i of the .ACP file. This algo-
rithm has the advantage of treating every frame
individually rather than accumulating elapsed time
(and error) from the beginning of the .DAT file.

Removing bad records. Once the files were
synchronized the data could be cleaned up by
removing bad records, combining adjacent records,
and eliminating some noise records.

It was suspected that faults in the acquisition
system caused some of the oculometer data records
(.DAT) to be inaccurate. Occasional computer
interruptions resulted in unusually long records.
Extensive logs were kept by several observers dur-
ing the testing and were combined afterwards into
a single test log. Those logs were used together
with automatic scanning (the SRCHDAT process) of
all .DAT files, which was followed by selective
manual scanning (the DMPDAT or DMPDT1 proc-
ess) of sections of the files to identify bad records.
Less than 0.02% of the million or so .DAT records
were marked as suspicious, and more than half of
those were associated with 2 subjects. Also more
than half of the suspicious records were associated
with logged problems. Only 20 of those records, all
of which were associated with logged oculometer
problems, were excised from the files. It was
thought that the remainder of the long records
would have a negligible effect on the study. Once
identified, the processor CUT20 was used to excise
the records from the files. As an aside, it should be
emphasized that the capability to quickly and con-
veniently examine the data files is very important
in these studies. Mistakes later in the process can

17

probably be corrected without too much effort, but
problems in data acquisition usually can only be
corrected by re-testing the subjects, a very expen-
sive prospect. It behooves the analyst to keep his
eye on the data and to use quick look analyses to
verify its integrity.

Filtering. Filtering was used to eliminate
hardware/operator and human behavior induced
problems in the data. Four filters were applied.
Filters 1 through 3 consisted of combining certain
sequences into a single event or record much like
what was done during the recording process. The
fourth filter just removed some out-of-track noise.
The order that the filters were applied is signifi-
cant. The salient features of the four filters are
described here. More detail on the filters can be
found in the source listing of the process FILTER1
in Appendix C.

Filter 1 reads three consecutive records from
the .DT1 file into memory arrays A, B, and C. The
condition for filtering is both A and B are in-track,
the duration of B is one sample time (1/30 seconds),
and C is not in-track. If the condition is true, add 1
to A's dwell time and store it in the scratch file
DT2, then advance C into A and read the next 2
records from .DT1 into B and C. Restart the
process by again testing for the condition. If the
condition tested false, store A into .DT2, advance B
and C into A and B and read the next record from
DT1 into C. Restart the process by again testing
the condition. There are, of course, tests for end of
data for which appropriate action is taken. When
finished the new lookpoint file is .DT2. Filter 1 is
relatively unimportant and was included to com-
pensate for a small problem in the collection soft-
ware. It merely combines two consecutive in-track
records, the second of which is only 1/30 of a second
long.

The second filtering process (filters 2 and 3)
reads three consecutive records from the .DT2 file
into memory arrays A, B, and C. Condition 1 for
filtering is the time duration of B is less than 13
counts, A and C are both in-track, and the display
distance between A and C is 1/2 inch or less.
Condition 2 is that either B is out-of-track or the
duration of B is less than four sample periods. If
either condition is not met, filters 2 and 3 are not
applied and the process proceeds to test for filter 4.
After applying filter 4, the process returns to test a
new sequence, A, B, and C for filter 2 and 3 again.
In this manner, the process advances through the
entire file. If conditions 1 and 2 are both true, then

18

either filter 2 or 3 is applied depending whether or
not the duration of B exceeds three sample times
(ie., B is a blink). Both filters 2 and 3 combine the
three records into a single record. The resulting
lookpoint coordinates and pupil diameter are an
average of those from A and C, weighted by their
respective dwell times. The resulting dwell time for
the combined record is either the sum of the dwell
times of the three records (filter 2) or, if record B is
a blink (out-of-track and of duration 4-12 sample
times), the sum of the A and C dwell times only
(filter 3). This resulting fixation is stored in A and
two new records are read from the .DT2 file into B
and C. The filter 2 and 3 process is then continued
by testing this new sequence for condition 1 and 2.
Again, there are tests for end of data for which
appropriate action is taken. Filters 2 and 3 com-
bine three records that appear to be a single fixa-
tion interrupted by a blink or a noise record into a
single record.

When the process branches to filter 4, the A, B,
and C arrays contain a sequence that did not qual-
ify for filter 2 or 3 processing. If the duration of A
is greater than three, A is stored on the .DTS3 file,
the final output of the successive filtering process.
Otherwise A is discarded. In either case, B and C
are moved to A and B, and a new record is read
from the .DT2 file into C. Control is then moved
back to the condition 1 and 2 tests for filter 2 and 3.
Filter 4 removes all remaining records with dura-
tion less than four that have already survived fil-
ters 1 through 3.

The application of those filters significantly
reduced the number of records that had to be
processed further.

Prior to filtering: The average number of
records per second for the 96 runs (12 subjects by 8
treatments) was 2.7 with a standard deviation 0.9
records per second. This resulted in .SCN files with
lengths averaging (within controller but across the
8 treatments) from a low of 6,173 records to a high
of 17,076. During 81.5% of the recording time, the
subjects were in-track. The average length of in-
track records was (.44 seconds.

After filtering: The average number of records
per second for the 96 runs (12 subjects by 8 treat-
ments) was 1.5 with a standard deviation 0.3
records per second. This resulted in .SCN files with
lengths from a low of 3579 records to a high of 8789.
During 84.1% of the recording time, the subjects
were in-track. The average length of in-track
records was 0.73 seconds.

2.4 Target Identification

After associating each fixation with a particu-
lar TIMER simulation update frame as discussed
above in Section 2.3, it is necessary to determine
what the subject controller viewed during that
image frame. This was done to learn something
about subject eye scan behavior and in turn about
the merits of proposed changes in the display.
Normally there are about ten aircraft on the display
at any time. While watching the test, with the
computed lookpoint superimposed on the repeater
displays, an observer is usually impressed by both
the static and dynamic accuracy of the oculometer.
The lookpoint swiftly traverses from object to
object, pausing an average of less than a second on
each. Just as the accuracy is obvious, so to is the
problem with static resolution. Often the lookpoint
will be slightly offset from the object. The observer
can tell what the subject is looking at even though
the projected lookpoint is not always right on the
target. This type of offset is not necessarily due to
anomalies in the oculometer system. Since the
fovea is one degree wide, the human vision can reg-
ister an item of interest without focusing directly on
the object. The goal in the data analysis, therefore,
is to find the nearest object to the lookpoint. The
offset varies with time, subject, and position on the
display, and it has a definite random component. It
is minimized by careful calibration before and dur-
ing the test. It should always be considered in the
design of the experiment.

The word hit in this section is shorthand for
associating a lookpoint with a screen object. A hit
occurs when the distance between an object and a
lookpoint is less than 0.57 screen inches, which for
the FASA study was equivalent to about 1.2 nauti-
cal miles in the terminal area. The 0.57 inches was
derived from our estimates of oculometer offset
errors. If several hits occur on a given radar sweep,
the lookpoint is usually associated with the closest
object. The exception was the centerline slot
marker and graphic marker runs, when the look-
point was close to both the aircraft and aid. In this
case, the lookpoint was assigned to a combined
category, aircraft and aid, rather than to the closest
of the two. This approach had more meaning in the
context of the FASA study. Each aircraft on the
display has an associated position symbol, normally
the letter F, connected to a data block by a leader
(reference 1). The nominal position of the data
block (the middle of the second line) is about 3/4 of
an inch from the aircraft position symbol. During

the DICE runs, two lines of DICE information are
added to the bottom of the data block and they are
closer to the aircraft symbol than the normal data
block text fields. Therefore, there is an area of
intersection between the data block and aircraft
position symbol hit circles. The lookpoint is
assigned to the closer of the two. The third class of
nonstationary objects on the display, in addition to
the aircraft position symbol and data block, are the
final approach spacing aids. Stationary objects on
the display assigned as targets include navigational
aids, the imaginary downwind flight legs (which are
not displayed), the final approach course centerline,
and the scheduled arrival sequence list in the upper
right corner of the display.

If no assignment could be made after searching
through the display, the object of the lookpoint was
designated as No ID. Less than ten percent (on
average) of the in-track fixations were associated
with the No ID object class. Although fixations
assigned to this object class represented a small
percentage of the total fixations, the No ID look-
points were displayed by themselves in hopes of
discerning a pattern. They appeared randomly dis-
tributed over the area of interest. In addition, the
group had a markedly lower average fixation time.
It appears that this class of objects may be indica-
tive of a characteristic of deliberate scanning
behavior rather than a reflection of the eye scan-
ning system accuracy.

Target identification is implemented by the
program FILLMRG. The source code for that pro-
gram is given in Appendix C. Figure B9 (Appendix
B) is a block diagram of the process. The skeletal
(formatted but not yet filled in) .MRG file is the
product of CRESMRG1 shown in figure B2. It con-
tains the lookpoint data and the simulation output
record pointer. FILLMRG adds the target informa-
tion extracted from the .ACP file. Both the .MRG
and .ACP records are discussed and illustrated in
Appendix A. Since the .MRG record is both an
input and output of FILLMRG, (figure B9), for
safety, the output file is temporarily named as a
.DUM file. When the process is complete, all the
.DUM files are renamed to .MRG files. This simple
device is more tolerant of error. The .MRG files are
the primary eye-scanning output file. The cross
check scan files (figure B5) and almost all the scan-
ning statistics are derived from the information on
these .MRG files.

Figures 9 through 14 describe the flow through
the FILLMRG program. Figure 9 describes the

19

main program. As is true in many of the programs
written for this study, FILLMRG is list driven. File
1 is a list of test runs. Each run is processed until
the list is exhausted. Usually the list would have
12 entries, one for each of the subject-controllers for
a given test configuration. The subprogram
SEARCH is called once per list entry and it
processes a complete .MRG file. The flow logic for
SEARCH is shown in figure 10. It uses
TARGETSET once per simulation update to set up
a list of possible targets of the fixation. SEARCH
uses subprogram PICK to select a target from the
list. PICK is called once for each in-track fixation.
Note that the lookpoint coordinates are transformed
to the simulation reference frame before the search
begins. When a hit is made, the coordinates of the
target object are transformed back to display coor-
dinates for storage on the .DUM file. Thus, all the
coordinates on the .MRG files are in the display
frame of reference. If PICK does not find an object
sufficiently close to the lookpoint, several other
objects are checked: the final approach course cen-
terline, the downwind lines, the scheduled aircraft
list and the outer marker. If the closest object
(from PICK) is a data block but it is not a hit,
SEARCH tests again requiring only that the X and
Y distances both be less than 0.57 inches. This
minor relaxation substitutes a square with sides of
1.14 inches for a circle of diameter 1.14 inches and
is used only with the data block. If subroutine
SEARCH fails to find an object close enough to the
lookpoint, the No ID designator is used and also
stored with the lookpoint data in the .DUM file.
Although not shown in the logic flow diagrams, out-
of-track records are copied from the input file to the
output file without processing.

TARGETSET (figure 11) makes a list of targets
to be used by PICK. Knowledge of the structure of
.ACP file record as illustrated and described in
Appendix A is helpful in understanding
TARGETSET. The first group on the list is all the
displayed aircraft. They are followed by the group
of data blocks, one block for each aircraft. For a
graphic marker or centerline slot marker run, the
data blocks are followed by a list of aids visible on
that particular sweep. The list format varies with
the type of aid. For the DICE runs, no entries are
added to the list, but both aircraft and data block
entries are modified for a particular aircraft if its
DICE is active on the display. Finally, ten static
navigational aids are added to the list. Their des-
ignators and positions can be found on the second
page of the FILLMRG source program in Appendix

20

C. They are in the arrays STATID, STATXS, and
STATYS. The locations are given in the simulation
frame of reference (nautical miles). As an aside,
some other interesting constants can be found on
the first page of the FILLMRG listing. SF1 = .472
is the scale factor indicating .472 inches per nauti-
cal milee. RUNOFF1 is the offset of the runway
from the Y simulation axis (in nautical miles).
Alpha is the angle between the two coordinate sys-
tems, etc.

Subprogram PICK (figure 12) chooses an object
from the TARGETSET list. The calling parameter
K is the list ordinal of the closest object. If K is
returned as zero, the subprogram could not find an
object within three nautical miles. For a CSM or
GM run, if both the aircraft and aid are within 1.2
nautical miles of the lookpoint, the type of the clos-
est object is changed to a combination of aircraft
and aid.

The FASA study showed that the most popular
target was the data block, followed by the aircraft
symbol and then by the aid. Average fixation times
varied widely by object. Time spent on static tar-
gets was very low.

2.5 Cross Check Scanning

Previous researchers (reference 3) have concluded
that there is valuable information in scan sequenc-
ing behavior. The argument is that the pattern of
transitions from object to object contains informa-
tion related to relative mental loading. In this
approach one searches the pattern for order or for
repetitive behavior. The lack of order is referred to
as entropy, which is thought to be inversely propor-
tional to mental work load, ie., higher entropy
indicates less workload. Reference 3 suggests com-
posing a transition matrix from the scan time his-
tory and then comparing the entropy of the matri-
ces for the various treatments. The transition
matrix is square (n x n) where n is the number of
objects in the display. Element (i,k) would be pro-
portional to the number of transitions measured
between object i and object k. Element (k,i) would
be different and would be proportional to the num-
ber of scan transitions from object k to object i.

The above model and associated hypothesis
was not used in the FASA study. However, it was
agreed that scan transition behavior should be
included in the FASA analysis. Complicating fac-
tors in this study were that the display changed as

Start

Identify test run
list file

Input name of test

run Index file. Open
as File #1

Program FILLMRG

Read a test
run designator

Read from File #1

Call INIT

Sel speed & format
Open files for 1est run

Close File #1
Test run index

Process one test run.

Find Targel for each
look point on file.
See separate Chart

————» Call SEARCH [———p! Call FIN -t

Print out statistics.
Close test run files.

END

Find screen object corresponding to each look point

Figure 9. Flowchart of main target identification program FILLMRG.

FILLMRG/SEARCH

Yes
____Start
Open Files.
—p{ Readlook New radar ___No
) sweep? Y.
point data. /
Close /'
Yes' iles
Display position Files.
and radar sweep F_%_egm /
pointer (.MRG file)
Call TARGETSET.| 3 | T’i‘i‘:“mg:n‘i‘;zk Call PICK.
l.oad object data. P p > find target.
coordinates.
Into simulation frame
- Distance Trans:)orig;:]argel ‘_N Distance \Yes
< 3nm? g P S. <1.2nm?
coordinales.
Into display frame No
| No I
l 2.4 nm square T
Store largel Within Tag \\ Yes Sel=lag Set targel
descriplion on square?) arameters
DUM File. quare! P ‘
List or Yes Sel = list ?
L Downwind? or = downwind
.DUM files renamed
to .MRG tiles after
run.
Set=0OM
or = final
No| set = NO-ID

Target not identified
Search List of candidate Targets

Figure 10. Flowchart of object search program used in target identification.

22

Compute .IDX
record number.

— W

FILLMRG/TARGETSET

Read .ACP record
number. Input
radar sweep datla.

——

Put all A/C into larget
arrays.followed by
Data biocks.

Initialize Target
Arrays.

Manual

of Aids =
0?

Marker?

\End of List?

Graphic Marker

Set parameters in

Add 4 vertices or

P corresponding A/C P single speed point
and Tag entry lo targel arrays.
Yes
Done GM —
DICE
No Set parametlers in
End of List? —p corresponding A/G +—-
and Tag entry

Done DICE >

<’ End of List?

Centerline slot marker

Set parameters in

P corresponding A/C

and Tag entry.

——

Add siot marker to
larget list

Yes l

Add stalic targets
to list.

———B\ Return. /

Compose Target List for Particular Radar Sweep

Figure 11. Flowchart of target tabulation program used in target

identification.

23

24

N FILLMRG/PICK

K=0: 1=0:IDXL=0
DISTANCE= 3nm
DISTMIN=100nm

Increment |
list pointer

Initialize

l

Compute look
pointto target —
distance, D1.

Compute look
p{ point to target
distance, D2.

Dl <= Yes

DISTANCE

X component only Y component only

‘
PRAL D2 <= D3=SQRT(| Yes
Distance D172 + D2*2)
No
<— |
l te »

Distance= 1.2 nm y ,__.-84 ____DM
incrmt IDXL, # of hits|— es |DISTMIN-D3|__p
Store hit ordinal. Set Minimum

Ordinal of closest object in list and
minimum distance are returned o
calling program

Target found

Change selected largel
lype to appropriale
combination type

Yes

Both A/C & Aid within
1.2 nm of loak point

No

No*

Return

Choosing the Target

Figure 12. Flowchart of object and target association program used in
target identification.

Start

Open test run
list file.

CROSS1

Read a test
run name

No

l

Initialize run

fotals »
.Open files. T FINDAB.

call

Add data from
latest segment
to run tolals.

Segmentisa
CCS sequence 7

|No

Write
sequence 1o
.CCS file

Yes _

|

Print run
totals.
Close files.

IDENTIFY and STORE CROSS-CHECK-SCAN SEQUENCE

Figure 13. Flowchart of overall logic used in identifying and saving cross-
check scan sequences.

25

26

Stant

CROSS1/FINDAB

.MRG file

Step to next
p ook point

record

—— —»

Test look point

Out-of-track ?

No

Yes

End of file ?

Stant of Sequence

| Hit

identify first
record of CCS
sequence, "A".

es
r ---Sequence breakers---
Step to next
look point Out-ol-track?
record
2'nd object
----------- Skip past thesg-----------
No
Yes Yes
Yes

4
identify 2'nd S
»{ object of CCS }—- End ol file ? No \lje(urn —
wgyn page
sequence, "B".

CCS SEQUENCES FROM .MRG FILE.

Figure 14. Flowchart of subprogram for determining the limits of a cross-
check scan sequence.

CROSS1 /FINDAB

order

Change ?

Previous Continued
page
2'nd to n'th transition of cross check scan
Yes Ye
---Sequence breakers--- s
Step to next No
look point Out-of-track? >——
record
----------- Skip past these-----------
> Blink? SN No
Yes Yes
‘ PO,
<
No
Increment CCS Tesl chan.ge
< { from previos

Hit.

AtoB or
BloA

N

\Relury

CCS SEQUENCES FROM .MRG FILE (Continued).

Figure 14 (Continued).

27

a function of time and that at any time only a sub-
set of all the objects were on the display.

While considering the transition matrix ap-
proach to the FASA unique display requirements,
the team consulted with Dr. Randall Harris of the
NASA Langley Research Center, an expert in eye
scanning analysis. He suggested a simpler and
arguably more powerful approach using cross check
scans (CCS's). He had tested the approach with
good results but had not had time to further explore
it or publish his preliminary results. Cross check
scanning was incorporated into the FASA study.

The working model formulated by the FASA
group was that the controller performed cross-check
scans to compare positions of aircraft to other air-
craft as well as to geographical (or other significant)
points on the display. The normal purpose of cross-
checking is to either perform some control action or
to monitor separation. The hypothesis was that a
reduction in the number of cross-checks indicated a
reduction in the amount of comparisons or judg-
ments required to properly time a control action,
assuming the amount of monitoring remained rela-
tively constant.

For the purposes of the FASA study, a CCS is
defined for no more than two objects, say A and B.
Any two screen objects can be used in a particular
CCS. A single scan transition from A to B (or B to
A, the direction of the transition was not a factor) is
termed a second order CCS. A cross check scan is
an uninterrupted sequence of fixations alternating
between object A and object B. Its order is one
more than the number of transitions between the
two objects. For example, the sequence A-A-B-A-A
would be a CCS of order 3 (i.e., 2 transitions). The
words uninterrupted sequence need some explana-
tion. A third object will break the sequence. Thus,
the sequence A-B-C-A would be considered three
second order CCS sequences: A-B, B-C, and C-A. C
breaks the A-B sequence and A breaks the B-C
sequence. This example illustrates that a given
fixation can belong to two CCS sequences, which
complicates the computation of total time used in
all CCS sequences. The other two types of records
on the .MRG file that can interrupt a CCS are a
long (>12/30 seconds) out-of-track or a long unas-
signed (No ID) fixation.

The program CROSS1 writes the .CCS file. A
block diagram of the process is shown in figure B5
of Appendix B. The .MRG files were searched for
CCS sequences and each record of the .CCS files
describes one such sequence. The .CCS record itself

28

is described in Appendix A. Tt contains the ordinals
of the beginning and ending .MRG file records for
the sequence. It also contains the number of
transitions in the sequence and the total time (in
1/30 seconds). Other fields contain information on
the two objects involved in the sequence. The
CROSS!1 source listing is given in Appendix C.

Figures 13 and 14 show the logic flow in
CROSSI1 for identifying and storing CCS sequences.
The diagram for the subroutine FINDAB, (figure
14), presents the logic for identifying or defining
the limits of the sequence. The diagram for
CROSSI, (figure 13) shows the overall logic flow.
The inner loop works its way through a single
.MRG file. The outer loop goes through a list of test
runs. In practice, the list usually contains the 12
subject controller runs for a given treatment.

FINDAB (figure 14) is composed of three serial
stages. The first stage finds a suitable starting
fixation, A. Only an end of file will cause this
search to end without a hit. Neither an out-of-track
nor a No ID is acceptable for A. The second stage
searches for the second object of the pair. A long
out-of-track or long No ID record will cause the
search to end unsuccessfully. That is, a CCS
sequence was not found. The search ignores short
out-of-tracks and short No ID's. If and when a
valid second object is found for the sequence, the
subprogram proceeds to the third stage. At that
point a CCS sequence of order 2 has been identified.
The purpose of the third stage is to determine
whether the sequence is of a higher order. The
third stage (figure 14, continued) keeps track of
transitions between A and B until it encounters one
of three types of .MRG file records: a third object C,
a long out-of-track, or a long No ID record. After
exiting from the third stage the CCS sequence is
recorded.

It would not be difficult to extend the logic to
more than two objects corresponding to the more
complex scan patterns observed to be used by the
subject controllers. This was not done at this time,
however, partially because of the difficulty in inter-
preting the results.

The data gathered on the .CCS files were sta-
tistically analyzed with respect to the number of
higher order CCS sequences associated with the
eight treatments. The data were broken down by
type of objects in the pair and zone pairs.
Reference 1 presents the zone pair results.

2.6 Display Zones

Earlier discussions focused on what the subject
controllers were viewing. By defining different
segments of the aircraft normal approach pattern,
insight was gained as to where the subject was
looking. Data were gathered on measures such as
cross-check scans between zones and time spent
within each zone. Figure 15 indicates the areas of
the display associated with the zones. As imple-
mented, the zone associated with an aircraft has to
do with what part of the pattern it is executing
rather than solely on its position. Thus, its heading
gets into the calculation too. At the corners of the
pattern, the heading distinguishes one zone from
another depending on the progress of the turn.
Also the base leg does not intersect the final at a
fixed point but moves (trombones) in and out as re-
quired by the traffic. Data blocks and aids are
assigned to the same zone as their corresponding
aircraft except that centerline slot markers are
always in zone 1. Because of the chosen imple-
mentation, some static objects such as navigational
aids do not have an associated zone. As a conse-
quence, the percentage of in-track time broken
down by zones for a particular controller and type
of aid do not sum to 100%. The time not included
corresponds to objects that do not have an associ-
ated zone.

3.0 Description of Statistics

The eye scan portion of the FASA study de-
scribed in references 1 and 2 relied, in part, on
statistical analyses of the merge (MRG) files and
cross check scan ((CCS) files, both of which are
discussed in the appendices and in sections 2.4 and
2.5 above. Some statistics were derived by custom
programs such as AIHIST (figure B8), SEQNCE1
(figure B15) or SEQNCE2 (figure B16). Other sta-
tistice were gathered using a standard data base
program. In both cases, the statistics were put into
spreadsheet tables and plotted for reporting pur-
poses.

From the beginning, the FASA study was
designed to use a repeated measure analysis of
variance (ANOVA) approach in order to establish
the statistical significance of measured differences
(in average values) as a function of the two factors
of interest: display format and approach-pattern
speed. The repeated measure ANOVA approach
has the advantage of compensating for the wide
variation among controllers. It was not unusual
that the cross controller differences (within treat-

ment) were larger than the cross treatment (within
subject) differences. The ANOVA calls for all sub-
jects to test on all treatments and, in effect, uses
each subject's average performance as his own con-
trol. In the FASA study, several commercially
available statistical analyses programs were used.
The oculometer data analysis was done principally
using the SYSTAT (SYSTAT Inc.) program, which
was checked against other ANOVA programs.
These programs compute the F statistic and prob-
ability (P) that the averages, measured for the vari-
ous treatments, are equal. If the probability is
lower than the preset level of significance, the
hypothesis of equality is rejected, and the treatment
is shown to have a significant effect. The ANOVA
demonstrated that the differences associated with
the different display formats were significant and
not just statistical noise.

The form of the data tables (1 through 9) as pre-
sented in this report is the same as the form used to
submit the data to the ANOVA programs. The
number of rows was always twelve representing the
number of controllers. The number of columns
represented the number of treatments being com-
pared. Most of the statistics computed for the
FASA study used a 12X4 table for the 170 knot
approach, a 12X4 table for the 210 knot approach,
and the two combined in a 12X8 table to test the
significance of the speed effect only. If the 12X4
ANOVA (170 or 210) showed significance (P<0.05),
then the individual aids were contrasted against
each other in a post hoc test using the Fisher PLSD
method. The results of those tests were reported in
reference 1. Tables 1, 4, and 7 have this straight
forward 12X8 form. In table 3, four separate 12X8
tables were formed, one for each zone using both
pattern speeds. Likewise in table 2, a 12x8 data
block table was formed using the two 12X4 tables as
shown. The target types Aid and Aid & A/C in table
2 had different dimensions (12X6 and 12X4 respec-
tively), because the aid was not used in the manual
case and the combination Aid & A/C was only
defined for the graphic marker and centerline slot
marker runs.

These statistical tables were used (although
presented in a different form) in references 1 and 2
to support to support the FASA research. They are
presented here for completeness and to illustrate
the methodology.

Three measures of lookpoint behavior as func-
tions of display format are included in table sets 1
to 9: in-track time, dwell time, and frequency of

29

-ApnJs VSV 2Y) 10j pauyep 3sa1ajutl Jo sauoz Av[dsip I2[[0IIU0D [euly Q[SIN31q

(€ 8u0zZ) ANIMNMOA

L

(1 suoz) TvNId

-

(€ 8u0zZ) ANIMNMOQ

(z suoz) asvg

(z suoz) asva-"¥

30

high-order cross-check scans. The first three table
sets deal with the percentage of total time that the
subject controller was being tracked by the oculo-
meter, the total in-track time classified by types of
gaze object (such as data block), and also by display
zones.

Average dwell times for each controller are
tabulated in tables 4 through 6. The totals in table
4 are classified by display object in table set 5, and
by zones in table set 6. Tables 7 through 9 tally the
number of high order cross check scans (of order 4
or greater) by controller. Section 2.5, above, has an
extended explanation of cross check scans. Table 7
gives overall sums for a particular controller and

treatment. In tables 8 and 9, the overall sums are
classified by target pairs and zone pairs.

The three types of oculometer statistics (total
time, dwell time, and frequency of cross check
scans) were successfully used to discriminate
between the tested display-format/pattern-speed
combinations, and they generally agreed with and
supported conclusions drawn from the other types
of measurements made in the FASA study. The
cross check scan analysis showed the most signifi-
cance of the three. Other possibly interesting sta-
tistics that might be examined in future studies are
the average duration of cross check scans by order
and frequency of cross check scans defined on more
than two (perhaps as many as five) distinct objects.

Controller In-Track as Percent of Total Time
Test 170 Kts Procedure 210 Kts Procedure
Subject | MANUAL [GRAPHIC| DICE CSM | MANUAL [GRAPHIC| DICE CSM
1 756 727 76.7 75.2 66.5 734 80.6 68.4
2 84.9 83.6 81.8 88.0 85.6 81.9 79.0 93.1
3 88.7 83.7 83.9 86.4 84.7 84.2 87.9 80.9
4 84.4 81.2 79.1 82.3 67.5 80.2 79.7 78.0
5 88.3 81.6 88.5 88.9 91.3 87.1 88.6 87.3
6 83.2 55.6 59.3 67.3 82.5 69.0 77.2 82.9
7 94 .1 84.1 92.7 92.6 90.7 90.9 89.3 93.9
8 80.1 916 94.3 90.4 95.3 93.2 93.6 950
9 87.6 87.4 88.7 86.4 91.3 89.2 89.1 91.2
10 87.2 83.6 86.8 85.6 87.3 90.4 87.6 91.1
11 75.9 753 72.2 80.7 84.8 83.4 75.2 78.2
12 80.7 83.9 81.6 90.3 89.5 86.2 86.4 91.0
Mean 85.0 80.3 82.1 84.5 84.8 84.1 84.5 859
St Dev 5.6 9.2 9.7 7.2 9.0 7.2 58 8.2

Table 1. Percentage of total test times that each subject was tracked by the

oculometer in the FASA study.

31

32

Percent of In-Track Time by T

Test

Subject

Data Block
MN17 GR17 DC17 SL17

MN17 GR17 DC17 SL17

argets, 170 Knot Procedure
AIC

Aid

MN17 GR17 DC17 SL17

N2I00WEONO A WN =

417 40.2 38.6 421
451 31.0 32.9 36.0
52.1 355 37.3 36.7
44.5 39.8 29.8 39.9
348 36.5 449 348
57.1 37.3 325 429
50.1 46.0 30.4 46.2
53.1 38.4 423 44.0
352 252 164 16.2
52.9 458 36.5 46.9
30.4 34.3 30.6 29.1
51.2 43.3 40.2 39.5

17.1
19.1
253
246
28.6
22.2
14.6
20.8
33.2
23.9

20.7 16.5 271
39.2 332 324
37.8 236 342
36.5 17.0 36.8
429 229 184
29.2 241 332
31.1 18.3 36.0
36.2 26.0 26.8
448 29.2 57.2
36.2 20.5 30.6
46.0 21.9 325 248
27.0 151 216 18.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.7
7.8
12.2
12.9
127
8.6
9.3
8.1
12.8
9.0
11.3

182 96
21.0 108
17.7 92
17.4 6.3
285 6.1
17.4 83
199 114
246 85
79 85
222 82
17.3 10.0
0.0 13.2 23.0 11.0

Mean

St Dev

457 37.8 344 378

356 22.4 322 22.7

0.0 10.8 196 9.0

82 57 72 82

72 51 92 49

00 20 48 16

Percent of In-Track Time by Targets, 170 Knot Procedure (Cont.)

Test

Subject

Ald & A/C
MN17 GR17 DC17 SL17

Other
MN17 GR17 DC17 SL17

Not Identified
MN17 GR17 DC17 SL17

OO ~NO A WN -

10
11
12

0.0 133 00 150
00 166 00 214
00 210 00 219
00 153 0.0 132
0.0 156 00 1659
0.0 108 0.0 99
00 157 0.0 117
00 19.0 0.0 20.1
00 187 0.0 262
0.0 150 0.0 98
00 123 0.0 188
00 129 00 90

18.8 129 99 6.7
95 66 76 58
74 51 54 32
105 80 83 7.7
126 71 60 74
95 111 9.0 88
129 70 85 94
68 74 54 45
115 7.7 94 81
68 58 59 66
12.8 10.0 11.2 10.2
10.3 68 7.8 93

188 52 63 96
62 48 62 7.0
28 27 54 37
84 70 77 83
97 51 22 62
42 81 79 79
59 37 52 67
40 11 10 22
85 65 90 738
41 39 48 438
10.8 102 84 7.1
115 88 74 130

Mean

St Dev

0.0 155 00 16.2

108 80 79 73

79 56 60 70

00 29 00 54

32 22 18 20

43 25 23 27

Table 2a. Percentages of in-track time allocated to each type of gaze object
identified for the FASA study, 170 knot approach-pattern-speed

procedure.

Percent of In-Track Time by Targets, 210 Knot Procedure

Test Data Block AIC Aid
Subject|MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21
1 51.1 346 27.3 39.7|]24.4 155 31.7 13.2] 0.0 17.1 258 13.1
2 |57.9 225 315 30.3]27.1 17.4 251 222/ 0.0 16.0 283 11.3
3]29.2 37.8 33.5 25.8/55.3 156 25.5 276|/ 00 142 247 83
4 1446 33.8 299 49.3|249 127 243 154/ 00 97 259 83
5 |41.7 219 226 264|386 30.3 33.2 298/ 00 146 36.3 96
6 |60.4 406 292 44.2|28.2 140 30.1 20.3] 0.0 157 291 9.1
7 1455 39.1 188 406|324 150 355 229| 00 152 321 7.4
8 541 316 29.7 32.1|136.0 21.2 242 3151 00 126 39.2 88
9 [|46.6 19.3 16.5 23.1}1384 18.3 455 252] 0.0 235 216 100
10 |48.7 426 289 326|36.0 18.0 28.3 27.2|] 0.0 123 352 120
11 139.5 29.4 16.3 235|325 25.0 495 230/ 0.0 129 185 9.2
12 |54.6 40.1 28.5 34.0)23.5 13.5 26.0 19.5] 0.0 145 32.1 15.0
Mean [47.8 32.8 26.1 33.5/33.1 18.0 316 23.1] 0.0 149 29.1 10.2
StDev| 83 76 57 81185 50 80 53|00 32 59 22

Percent of In-Track Time by targets, 210 Knot Procedure (Cont.)

Test Aid & A/C Other Not Identified
Subject|MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21
1 00 182 0.0 130{120 84 81 75125 62 7.1 135
2 00 267 00 24199 105 81 43|51 68 70 79
3 0.0 198 0.0 278|110 B85 85 63|45 42 78 42
4 0.0 120 00 99134 107 90 6.2]17.1 212 109 11.0
5 00 257 00 236|132 56 55 43|66 19 25 63
6 00 155 00 99|81 77 78 94|33 65 37 72
7 00 204 00 145|159 76 86 81|62 28 50 65
8 0.0 291 00 222|179 47 61 34120 07 09 21
9 00 50 00 30.7|106 216 103 60|44 124 62 51
10 |00 205 00 181}j115 48 54 59|38 19 22 42
11 00 212 00 212|154 79 94 100|127 36 6.3 130
12 |00 193 00 156|111 66 7.1 56|108 61 64 102
Mean|] 0.0 194 00 1921117 87 78 64|74 62 55 76
StDev| 00 63 00 65({24 43 15 19|45 54 27 35

Table 2b. Percentages of in-track time allocated to each type of gaze object
identified for the FASA study 210 knot approach-pattern-speed

procedure.

Percent of In-Track Time by Zones, 170 Knot Procedure

Test ZONE 1 ZONE 2 ZONE 3 ZONE 4
subjet M\ GR DC SL|MN GR DC SL |MN GCR DC SL|MN GR DC SL
1 152 45 46 62|15 29 29 23| 8 12 13 3[3 7 5 2
2 |ss 51 42 s7]|26 28 37 28|11 12 13 5|4 4 4 2
3 |56 42 45 65|29 39 32 237 13 14 715 4 2 2
4 |52 48 43 50|30 32 34 29| 7 10 13 10}2 2 3 3
5 |48 45 49 50|31 36 35 33|10 12 10 8} 2 2 5 2
6 |58 47 35 50|26 27 35 28| 8 13 19 1215 4 3 2
7 |s6 42 40 59|23 38 39 25| 9 12 12 715 5 4 2
8 |49 45 51 63|30 34 32 21113 13 1 11| 4 7 5 3
9 |49 42 42 61|27 33 29 22|10 14 16 5|3 5 5 2
10 |47 41 38 51|25 35 38 29)19 16 15 1213 5 3 3
11 |49 46 46 60|28 27 25 20| 9 11 14 g8l 4 5 7 4
12 |40 38 43 57|33 36 33 20|12 15 13 8|4 2 4 2
Mean 1 51 44 43 57 |27 23 33 25|10 13 14 8 4 4 4 2
stbev|[5 3 4 515 4 4 413 2 2 3 1 1 1 1
Percent of In-Track Time by Zones, 210 Knot Procedure
Test ZONE 1 ZONE 2 ZONE 3 ZONE 4
subject] MM GR DC SL|MN GR DC SL |MN GR DC SL{MN GR DC SL
1 51 49 42 58|21 29 34 20|11 12 12 6 5 4 4 3
2 |eo 49 52 62|22 28 25 23|8 13 13 4|5 4 4 2
3 |50 55 56 61|33 21 23 258 17 10 7|5 4 3 3
4 |46 40 53 56|22 21 24 2410 14 11 713 4 3 2
5. |58 51 49 58|21 34 35 24]8 9 11 9t7 3 2 3
6 |61 45 52 60|25 32 28 22| 6 12 12 8|4 6 5 3
7 |54 43 46 e62)22 37 31 2210 10 12 6lo 7 6 4
8 |65 53 53 64|22 30 31 18]7 11 9 1213 5 6 3
9 |es 48 s8 67|16 21 19 18| 7 12 M 717 6 4 3
10 le1 54 48 60|21 30 34 25]| 8 11 1 8|7 3 5 3
11 |61 53 54 58|14 28 25 16| 6 11 g8 8|16 6 5 5
12 |58 51 51 64|18 29 29 17]9 10 12 6}4 3 3 2
Mean | 57 49 51 61|21 28 28 21| 8 12 11 715 5 4 3
stbevl e 4 4 3|5 5 5 312 2 1 212 1 1 1

Table 3. Percentages of in

4

-track time allocated to each display zone d

efined for the FASA study.

IController

Average Fixation Time for Session (In Seconds)

Test 170 Kts Procedure 210 Kts Procedure
Subject | MANUAL |GRAPHIC| DICE CSM | MANUAL |GRAPHIC| DICE CSM
1 0.66 0.64 0.67 0.74 0.61 0.70 0.95 0.75
2 0.81 0.83 0.86 0.91 0.80 0.87 0.90 1.07
3 0.68 0.73 0.72 0.73 0.72 0.77 0.92 0.87
4 0.56 0.52 0.50 0.56 0.47 0.39 0.54 0.69
5 0.71 0.73 0.86 0.82 0.78 0.77 0.86 0.81
6 0.45 0.40 0.40 0.49 0.51 0.61 0.65 0.66
7 0.84 0.79 0.78 0.87 0.81 0.82 0.91 0.94
8 0.96 1.21 1.17 1.04 0.99 1.24 1.20 1.23
9 0.67 0.70 0.65 0.84 0.68 0.70 0.72 0.81
10 0.71 0.65 0.73 0.64 0.73 0.73 0.87 0.73
11 0.44 0.49 0.50 0.55 0.48 0.58 0.54 0.50
12 0.65 0.59 0.69 0.56 0.56 0.61 0.73 0.64
Mean 0.68 0.69 0.71 0.73 0.68 0.73 0.82 0.81
8t Dev 0.14 0.20 0.19 0.16 0.15 0.20 0.18 0.19

Table 4. Average length of lookpoint fixations for each subject

35

Fixation Time ByTargets-170 Knot Procedure

Test Data Block AIC Aid
Subject IMN17 GR17 DC17 SL17{MN17 GR17 DC17 SL17|MN17 GR17 DC17 SL17

1 0.72 064 0.51 078|067 066 0.72 090| nfla 0.72 1.15 063
0.92 0.83 0.63 097|084 081 0.83 102| nfa 095 192 0.73
3 0.72 0.70 0.52 0.77]0.69 0.73 0.80 0.77| n/a 0.80 1.12 0.49
4 062 056 0.36 060|068 052 061 069| nfa 069 0.84 0.61
S 0.78 0.80 0.59 0.92}0.76 069 0.73 090| n/a 081 1.61 0.56
6 046 0.41 0.28 0.53|0.49 043 043 058| nfa 043 0.54 0.44
7 0.86 0.83 0.52 0.95|0.88 0.71 0.79 091 nfa 0.85 1.28 0.85
8 1.09 127 0.86 1.13|091 098 098 092| nla 147 239 0.76
9 0.70 0.63 0.40 0.69|0.73 068 0.78 1.10| nf/a 0.97 0.93 0.66
10 |0.81 0.71 0.51 0.73]|0.70 0.63 0.79 0.72| n/a 0.69 1.32 048
11 |0.46 0.52 0.38 0.57]|0.54 0.53 053 063| nfla 060 0.87 0.46
12 (068 0.60 0.50 0.58]0.70 0.58 0.65 0.62| n/a 0.72 1.16 0.57

Mean |0.74 0.71 051 0.77]0.72 0.66 0.72 081] n/a 081 1.26 0.60

StDev [0.17 0.21 0.14 0.18}0.12 0.14 0.14 0.16] nfa 0.24 049 0.12

Fixation Time ByTargets-210 Knot Procedure

Test Data Block AIC Aid
Subject [MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL.21

069 0.73 0.56 0.79|066 0.75 1.09 085| nla 072 1.73 0.76
0.92 083 056 108|074 075 092 112| n/fa 093 135 0.73
0.73 082 0.58 0.84{0.79 074 092 0.89| nfa 084 129 0.59
0.53 1.11 0.36 0.79|0.56 043 060 0.76| nfa 0.42 0.82 0.63
0.82 0.80 0.40 0.85(0.83 0.81 0.78 0.85| nfa 0.69 1.45 0.54
0.53 0.63 0.36 0.72]0.57 0.67 069 0.75] n/a 0.66 0.94 0.54
0.87 0.85 040 1.05/085 0.73 093 1.03} nla 089 145 069
1.09 124 061 1.27|093 097 095 127 nla 126 196 0.73
0.67 064 0.33 064|082 0.73 081 094| nla 0.0 1.01 0.62
0.82 080 0.45 0.79|0.74 0.72 086 0.83]| nla 064 135 0.57
0.51 0.60 0.28 0.50{0.55 0.55 060 060| nf/a 0.61 0.74 0.41
0.59 061 0.37 061|059 060 0.75 074} n/a 0.62 0.98 0.61

230NN DWN 2

Mean |0.73 0.81 0.44 0.83]0.72 0.70 0.83 0.89| nf/a 0.76 1.26 0.62

StDev |0.17 0.19 0.11 0.21]0.12 0.13 0.14 0.18| n/a 0.21 0.36 0.10

Table 5. Average length of lookpoint fixations associated with each type of gaze
object.

Fixation Time ByTargets-170 Knot Procedure (Continued)

Test Aid & A/C Not Identified
Subject | MN17 GR17 DC17 SL17 | MN17 GR17 DC17 SL17

na 086 nla 115 |1 058 034 036 047
n/a 1.35 n/a 112 | 046 043 048 066
n/fa 1.06 n/a 122 | 0.30 032 042 03
na 087 na 067 | 030 024 025 0.32
nfa. 090 nfa 095 | 048 044 039 055
na 052 na 061|026 026 026 032
n/a 118 n/fa 089 | 058 038 040 058
n/a 1.82 nl/a 152 | 055 034 033 049
n/a 122 nla 124 | 043 039 042 045
10 na 0.91 na 079] 034 029 035 033
1 na 070 na 071)] 026 029 029 0.31
12 na 081 na 076 | 050 039 046 044

Mean n/a 1.02 n/a 097 | 042 034 037 044
StDev | n/a 0.33 n/a 027 | 012 006 007 0.11

OCONOTONDBDWN -

Fixation Time ByTargets-210 Knot Procedure (Continued)

Test Aid & A/C Not Identified
Subject] MN21 GR21 DC21 SL21 | MN21 GR21 DC21 SL21
1 nfa 090 nla 138 | 042 041 049 0.51
2 n/a 1.42 na 200 | 047 048 049 070
3 na 095 nla 154 | 037 040 065 042
4 na 0585 na 080] 033 029 030 046
5 na 093 nla 126 | 063 034 039 049
6 na 080 nla 105 | 027 036 030 042
7 nfa 105 nla 119 1 051 038 045 060
8 n/a 1.77 n/a 194 | 052 036 032 062

9 nfa 070 nla 150 | 036 057 042 036
10 na 09 nla 104 | 037 027 030 034
11 na 079 na 081|030 029 029 03
12 na 0.81 n/a 1.06 | 041 040 048 046
Mean na 097 nla 130] 0.41 038 041 047
StDev| nla 032 na 038] 008 008 011 0.11

Table § (Cont.). Average length of lookpoint fixations associated with each
type of gaze object.

Fixation Time by Zones-170

Test ZONE 1 ZONE 2 ZONE 3 ZONE 4
Subjectf MM GR DC SL|MN GR DC SL|MN GR DC SL|MN GR DC SL
7 1070 065 062 0.81]0.70 0.70 0.87 0.85]055 0.67 077 047]0.78 0.80 0.76 0.63
2 loss 078 075 083|092 1141 1.27 1071072 095 089 068|074 073 072 080
3 |072 0es 067 082|070 088 080 074|060 078 080 057|078 066 062 053
4 |058 053 048 056|075 088 075 0.75/048 0.51 0.50 054043 049 040 0.51
5 |o073 074 0768 080|086 082 1.07 099|061 070 1.02 074|058 0.56 0.81 072
6 |047 041 041 053|048 045 045 054|042 038 039 044|049 043 0.38 046
7 |ose 073 0868 080]0.92 099 1.07 1.03|067 076 077 069|081 073 069 069
g |oes 100 1.03 1.00[1.05 154 160 1.05/0981 121 130 062139 123 1.19 118
o |o76 068 059 097{068 091 080 091|057 0.71 072 057|062 084 057 057
10 |0.70 064 066 066|084 079 089 075 0.76 068 076 0.58)068 052 059 0.66
11 045 051 049 050]058 062 070 060]|0.39 0.48 0.50 049|042 052 050 0.58
12 |o0s83 058 062 061|075 068 0.92 061|063 062 074 045|070 0.52 0.61 046
Mean |0.70 087 064 077]077 085 096 082|081 070 0.76 0.60[0.70 085 0.66 0.85
StDev|015 017 0.16 018|016 028 029 0.19|0.15 022 0.24 0.14[0.26 021 022 0.19
Fixation Time by Zones-210
Test ZONE 1 ZONE 2 ZONE 3 ZONE 4
Subjectf MN GR DC SL|MN GR DC SL|MN GR DC SL|MN GR DC SL
7 |064 075 080 084|070 0.74 1.35 0.82[0.56 069 101 054|068 0.77 071 0.77
o 1084 093 093 125|087 098 1.12 1.02|068 086 090 064|083 073 078 073
3 0.76 0.80 0961 084|079 0.84 1.07 094|064 080 102 063}067 067 0.76 0.75
4 |053 043 060 072|056 050 070 087|044 039 051 061]041 038 039 056
5 |o082 081 079 088|080 080 1.09 088|064 0.74 094 064)095 056 0.58 0.75
6 053 0690 068 074|055 064 0.73 066|045 0.54 066 0.54]0.56 058 061 0.58
7 los1 082 088 100|094 082 129 104|081 076 091 070/0.90 0.76 0.80 0.80
g8 |102 126 115 132|106 128 144 1.21/081 123 113 1.03[1.06 1.22 1.18 1.25
9 073 0.71 073 095|069 082 087 077|056 070 081 062}0.73 071 0.59 0.66
10 |o75 077 083 077|083 078 1.13 082|069 073 087 066]0.84 067 070 064
11 |os4 058 058 058|048 068 065 054|039 0.55 053 0.41]060 055 048 055
12 060 064 071 0.71]0.58 0.64 0.87 062]049 056 072 049]057 057 068 0.60
Mean | 071 077 0.80 089|074 080 1.03 085[060 0.71 083 063}0.74 068 069 0.72
StDev|[015 020 0.16 022]018 020 026 0.19[0.14 021 0.9 015]0.19 020 0.20 0.18

38

Table 6. Average length of lookpoint fixations associated with each display zone.

Number of Cross Check Scans of Order 4 or
Greater By Subject

Test 170 Kts Procedure 210 Kts Procedure

Subject] MAN GM DICE CSM MAN GM DICE CSM

1 69 68 88 55 72 45 83 41

2 95 34 69 66 103 42 77 73

3 200 71 116 103 146 101 122 77

4 61 57 70 55 82 53 72 46

5 88 59 87 81 116 62 128 93
6 226 43 70 54 243 46 130 114

7 144 63 131 85 151 93 135 77

8 116 65 115 105 190 85 137 95

9 38 67 92 63 161 58 89 80
10 146 80 108 102 128 87 114 110

11 113 56 65 103 145 78 97 83
12 103 66 82 105 170 60 93 113
Mean | 1166 | 608 | 91.1 814 | 1423 | 67.5 | 1064 | 83.5
StDev| 552 | 124 | 218 | 218 | 473 | 204 | 238 | 236

Table 7. Total number of cross-check scans of order 4 or greater identified
for each subject.

40

Number of CCS's of Order 4 or Greater by Target Pairs, 170 Knot Procedure

Test | AIRCRAFT / AIRCRAFT AC / OTHER TAG TAG !/ TAG

Subject [MN17 GR17 DC17 SL17|MN17 GR17 DC17 SL17|MN17 GR17 DC17 SL17
1 5 2 3 1114 5 24 7 |15 20 40 9

18 4 10 1|22 3 2 10|41 10 25 6

3 2¢ 6 9 7|78 8 21 12|84 20 70 9

4 9 2 7 1116 4 219 1215 13 29 "

5 21 7 2 3|3 10 13 19| 6 7 5 9

6 32 7 14 0|3 5 14 3 {118 7 22 11

7 12 3 15 0 |46 7 44 17|51 24 58 24

8 21 14 2 2|4 10 17 14|41 19 61 30

9 12 19 51 4 |13 11 18 5 8 6 11 2
10 29 3 13 5 |46 8 22 12|54 34 47 23

1 41 6 8 3|3 12 13 21|16 17 31 8
12 13 2 8 2|13 7 10 18] 5 20 49 38
Mean | 20 6 14 2 |33 8 20 13]42 16 42 15

Stbev | 10 5 12 2 | 18 3 8 5132 8 18 11
Number of CCS's of Order 4 or Greater by Target Pairs, 210 Knot Procedure

Test | AIRCRAFT / AIRCRAFT AC / OTHER TAG TAG /I TAG

Subject JMN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21

1 5 1 8 0|21 2 18 3|29 13 38 8

2 6 2 4 0|32 o0 18 7 |43 2 49 2

3 70 5 4 5 |33 14 28 3|25 21 69 15

4 8 1 6 0 7 1 12 8 |30 11 18 15

5 15 8 19 5|5 9 28 15|16 8 5 2

6 29 1 17 2 |3 1 19 9 |150 16 72 27

7 23 2 27 6|48 5 33 15|38 18 61 19

8 42 16 22 4|5 7 20 9|73 7 8 7

9 %6 2 16 3 |38 1 26 5|7 2 29 10
10 17 4 9 5 {3 1 11 8 |48 16 77 10

11 17 9 37 2|5 14 28 9 |37 11 14 2

12 8 2 4 0|l29 3 19 6 {106 17 89 9

Mean | 21 4 14 3 |37 6 22 8 |5 12 52 11

stbev [18 4 10 2 |14 5 7 4 |37 6 22 7

Table 8. Number of cross-check scans of order 4 or greater associated with pairs of

gaze objects.

No. of CCS's of Order 4 or Greater by Target Pairs, 170 Knot Proc. (Cont.)

Test TAG/AID OTHER/ AID OTHER (8 PAIRS)
Subject IMN17 GR17 DC17 SL17|MN17 GR17 DC17 SL17|MN17 GR17 DC17 SL17

1 na 21 na 22|na 8 na 5 |34 12 21 11

2 na 7 na 283|na 5 na 20)] 14 5 12 6
3 na 15 na 31 |nla 16 n/a 32| 17 6 16 12
4 na 12 na 9 |na 10 na 7 {21 16 13 15
5 nNa 14 na 17 |nla 19 nla 15| 22 2 13 18
6 na 10 na 13 |nla 2 na 13145 12 20 14
7 na 17 nla 15 |nfa 7 nla 10| 35 5 14 19
8 n/a 6 na 22| na 10 n/a 20] 13 6 15 17
9 nNa 9 na 6 |nfa 20 na 30| 5 2 12 16
10 na 17 na 17 |na 6 na 14| 17 12 26 31
11 nfa 7 na 19 |nla 6 na 37|20 8 13 15
12 na 17 na 11 |na 9 na 10|22 11 15 26
Mean | nla 13 na 17 |nfa 10 nla 18 | 22 8 16 17
StDevina 5 na 7 |na 5 na 10} 11 4 4 6

No. of CCS's of Order 4 or Greater by Target Pairs, 2

10 Knot Proc. (Cont.)

Test TAG/ AID OTHER ' AID OTHER (8 PAIRS)
Subject IMN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21|MN21 GR21 DC21 SL21
1 na 15 na 22 |{na 6 na 3 17 8 19 5
2 na 9 na 30 |na 17 na 25| 22 12 6 9
3 na 29 nla 9 |na 13 nla 36| 18 19 21 9
4 na 19 n/a 10 | n/a 3 n/a 0 37 18 36 13
5 n/a 6 na 23 }{na 25 na 37| 29 6 24 1
6 nfa 18 n/a 29 | n/a 6 nfa 19 | 27 4 22 28
7 na 33 na 18 | nla 24 nla 5 42 10 14 14
8 na 18 na 20 | nla 29 nla 45| 25 8 13 10
9 na 14 n/a 18 | n/a 13 n/a 31 32 26 18 13
10 nNa 26 na 28 |nfa 13 nla 40| 24 17 17 19
11 n/a 9 na 23 |na 19 na 31 35 16 18 16
12 na 15 n/a 60 | n/a 9 na 22|27 14 11 16
Mean | na 18 n/a 24 |na 15 nla 25|28 13 18 14
StDev | n/a 8 na 13 | n/a 8 na 14 7 6 7 6
Table 8 (Cont). Number of cross-check scans of order 4 or greater associated with

pairs of gaze objects.

41

42

Number of CCS's of Order 4 or Greater by Zone Pairs, 170 Knot Procedure

Test zone 1/ zone 1 zone 1/ zone 2 zone2 / zone 2 zone2 / zone 3

Subjecti MN GR DC SL|MN GR DC SL|MN GR DC SL{MN GR DC SL

1 32 23 29 21117 10 29 25|6 16 11 2|3 7 8 1

2 30 19 25 30|46 7 27 26| 8 2 1 212 2 9 2
3 65 31 35 36|87 19 47 45|20 3 5 5 |17 14 17 10

4 26 19 18 14|13 14 18 28|12 14 7 6} 4 2 16 2
) 18 15 29 14|48 16 34 40| 8 14 12 9| 4 9 6 7
6 84 20 17 20|86 4 21 15{16 9 12 5|19 3 1 1 3

7 54 20 37 23|48 24 44 51| 4 0 6 2|9 14 28 O

8 20 28 55 33|50 15 29 48|15 1 6 5112 13 14 2

9 § 27 26 21|20 20 27 2712 4 6 5|7 10 11 O
10 |43 30 42 18|44 19 29 41| 5 10 12 10]12 10 8 7
11 40 32 21 34|48 14 23 40|14 4 3 1 9 1 6 6
12 123 16 26 37|53 21 30 3|7 16 7 6] 9 5 10 4
Mean |37 23 30 25147 15 30 35| 8 8 7 518 8 12 4
stbev[22 6 11 8|23 6 9 11|]5 6 4 314 S5 6 3

Number of CCS's of Order 4 or Greater by Zone Pairs, 210 Knot Procedure

Test zone 1/ zone 1 zone 1/ zone 2 zone2 / zone 2 zone2/ zone 3

Subjectf M\ GR DC SL|MN GR DC SL|MN GR DC SL|MN GR DC SL
1 25 17 17 21|29 12 33 16|14 2 7 1 5 1 11 3

2 50 10 32 21|34 12 28 44| 4 8 1 6|5 4 7 0

3 33 32 48 23|73 27 45 34| 9 7 5 7115 4 5 5

4 33 20 25 81121 12 17 19|85 9 9 3|7 3 7 1

5 30 14 38 21|48 25 58 48| 7 14 6 4|2 3 15 3

6 99 12 43 25|104 12 41 58| 9 13 10 5 |14 5 19 6
7 50 15 24 30|45 43 60 32|18 9 4 3|10 13 23 4

8 85 27 46 26|72 23 47 3714 9 5 0]3 10 23 0

g 87 15 31 32|39 6 39 25| 5 12 1 1 8 9 3 4

10 |55 38 37 40|48 15 45 43| 6 22 6 7 4 1 14 1

1 70 31 31 35|51 13 42 27|15 8 9 3] 2 8 2 1
12 81 25 21 49|60 8 50 50|15 15 4 216 3 6 O
Mean |50 21 33 28|52 17 42 36| 6 11 6 4 7 5 11 2
stbev|25 9 10 11]23 10 12 13} 2 6§ 3 2 4 4 7 2

display zones.

Table 8. Number of cross-check scans of order 4 or greater associated with pairs of

No. of CCS's of Order 4 or Greater by Zone Pairs, 170 Knot Proc. (Cont)

Test zone1/zone 3 zone1/zone 4 Other

Subject] MN GR DC SL|MN GR DC SL|MN GR DC SL

1 4 7 8 4 3 4 1 0 4 1 2 2

2 7 (0] 1 4 2 0 1 0 0 4 5 2

3 3 2 9 5 7 0 2 2 1 2 1 0

4 5 4 6 4 1 1 2 0 0 3 3 1

5 6 3 3 7 1 0 0 2 3 2 3 2

6 12 1 3 9 15 2 2 1 4 4 4 1

7 11 3 9 8 16 1 5 0] 3 1 2 1

8 18 2 2 13 1 5 9 3 1 1 0] 1

9 1 4 11 9 3 1 2 1 0 1 9 0

10 34 5 10 17 0 4 1 1 8 2 6 8

11 6 2 5 16 4 2 1 5 2 1 6 1

12 9 2 2 13 1 2 1 4 1 5 6 2

Mean 10 3 6 9 4 2 2 2 2 2 4 2

St Dev 9 2 4 5 5 2 2 2 2 1 3 2

No. of CCS's of Order 4 or Greater by Zone Pairs, 210 Knot Proc. (Cont)

Test zone1 / zone 3 zone1/zone 4 Other

Subject] MN GR DC SL|MN GR DC SL|MN GR DC SL
1 6 7 10 0 3 3 2 0 0 3 3 0

2 6 4 7 2 4 2 1 0 0 2 1 0

3 5 17 15 6 6 9 2 1 5 5 2 1

4 7 7 9 12 5 1 2 2 4 1 3 1

5 11 3 9 13 9 3 2 2 0 0 0] 2

6 9 1 5 16 4 2 7 3 4 1 5 1

7 14 5 15 7 21 4 4 1 3 4 5 0

8 22 6 9 26 2 7 7 1 2 3 0 5

9 9 10 9 9 13 4 4 6 0 2 2 3
10 8 5 6 15 5 2 3 4 2 4 3 0
11 5 4 4 10] 10 11 6 3 2 3 3 4
12 9 3 7 8 3 2 1 2 6 4 4 2
Mean 9 6 9 10 7 4 3 2 2 3 3 2
StDev | 5 4 3 7 5 3 2 2 2 1 2 2

Table 8 (Cont). Number of cross-check scans of order 4 or greater associated with

pairs of display zones.

43

4.0 Major Results and Concluding
Remarks

In the FASA study, as should be the case for
any experiment, careful a priori consideration was
given to defining the performance measures to be
used with the oculometer, the steps taken to insure
data integrity (e,g., calibration and quick look), and
how the data were to be recorded and analyzed.
Because of system developments (hardware and
software) described in this paper, the oculometer
system was successfully applied to the simulated
interaction between an air traffic controller and the
plan view radar display. The eye scan data were
used along with other measurements to evaluate
the relative merits of several proposed display
modifications as described in references 1 and 2.
Methods were developed and implemented to
increase resolution and to maintain alignment
accuracy. Algorithms were developed to synchro-
nize the oculometer data to the time history data, to
filter the data, to identify the target of each indi-

vidual fixation, and to identify cross check scan se-
quences. Some of the measurement techniques,
especially with respect to cross-check scans and
display zones, have not been described in previous
papers. Detailed tables have been provided, which
show measurements averaged over each test run,
and are in the form used in ANOVA testing for
significance. These tables clearly illustrate the
diversity among controllers and the consistency for
any given controller across experimental treat-
ments. The ANOVA tests reported in references 1
and 2 clearly affirmed the significance of differ-
ences measured between display formats. The
recorded data (SCN, .DAT, and .ACP) files have
been preserved for further analysis, if needed. The
.MRG and .CCS files which resulted from the pro-
cedures described in this paper, are also available.
The flow diagrams, source code, block diagrams,
and file record descriptors provided in this report
should ensure that the technology can be extended
to future air traffic studies and that, if needed, the
FASA oculometer data can be further analyzed.

References

1) Credeur, L., Capron, W.R., Lohr, G.W., Crawford, D.J., Tang, D.A., and Rodgers, W.G., Jr.
(1893), Final Approach Spacing Aids (FASA) Evaluation For Terminal-Area, Time-Based Air Traffic
Control. NASA TP-3399, National Aeronautics and Space Administration, Langley Research Center,
Hampton, VA,

2)) Credeur, L., Capron, W.R., Lohr, GW., Crawford, D.J., Tang, D.A., and Rodgers, W.G., Jr.
(July-September, 1993), "A Comparison of Final Approach Spacing Aids for Terminal ATC
Automation,” Air Traffic Control Quarterly, Vol 1(2) 135-178.

3.) Harris, R.L., dr., Glover, B.J., and Spady, A.A., Jr., (1986), Analytical Techniques of Pilot
Scanning Behavior and Their Application. NASA TP-2525, National Aeronautics and Space
Administration, Langley Research Center, Hampton, VA.

4.) Kaylor, Jack T.; Simmons, Harold I.; Naftel, Patricia B.; Houck, Jacob A.; and Grove, Randall
D. (1985), The Mission Oriented Terminal Area Simulation Facility NASA TM-87621, National
Aeronautics and Space Administration, Langley Research Center, Hampton, VA.

Cross Check Scan File Record (.CCS)

Appendix A

Data File Record Descriptors

shown below:

This is an ASCII type file with 103 bytes per
record. The last two bytes are a carriage-return

and a line-feed A segment of a .CCS file is

988 2182 2183 1 1510 T™O8 A/C 432 433 25 12 01 00 25 1.2 260 [7
909 2183 2184 1 10 18 aA/C TG 433 433 40 22 11 00 40 0.7 260 260 7 7
990 2184 2187 2 15 15 TAG TAG 433 432 1 21 10 00O 26 1.9 260 7 [
991 2194 2196 2 1515 TAG TAG 433 432 183 21 10 00O 57 1.9 260 2]
992 2196 2199 2 15 10 TG A/C 433 501 208 23 10 00 257 4.9 260 2]
993 2199 2201 1 15 10 TG A/C 433 433 232 21 10 0O 226 1.0 260 2]
994 2201 2206 3 10 15 A/C TAG 433 432 158 11 00 00 4 1.2 0 0
998 2206 2207 1 1510 TN A/C 432 432 88 11 00 0O ss 0.7 0 0
996 2207 2208 1 10 15 A/C TAG 432 433 7% 11 00 00O 79 2.5 0 [}
997 2208 2209 1 15 10 T A/C 433 421 67 12 00 00O 67 3.3 0 [}
998 2209 2210 1 10 10 A/C A/C 421 501 sS4 23 01 00O s 2.2 345 0 50
999 2212 2213 1 10 53 A/C LINE 501 sDW 7% 33 10 00 14 2.4 345 43 [
1000 2213 2214 1 53 15 LINE TAG SDW 501 19 33 01 00O 19 1.9 345 0 43
1001 2214 2215 1 1510 TAG A/C 501 501 43 33 11 00 43 0.7 345 345 4 43
1002 2215 2219 4 10 53 A/C LINE 501 SDW 101 33 10 00 61 2.4 345 43 [}
1003 2219 2225 1 1015 A/C TAG S01 433 74 31 11 01 23 3.7 345 170 36 -S
1004 2227 2228 1 51 1S LINE TAG FNL 432 15 11 00 00O 11 2.8 (/]]
1008 2228 2229 1 1515 TAG TAG 432 433 32 11 01 01 1 1.8 170 [-6
1006 2232 2234 2 15 1S TAG TAG 433 432 111 11 10 10 26 1.8 170 -7]
1007 2234 2241 4 15 51 TAG LINE 433 ML 213 11 10 10 64 1.4 170 -7 []
1008 2241 2242 1 1515 TAG TAG 433 432 S0 11 00 00 $0 1.7 0 0
The first field is a record number or se- Anytime a marker is on (notice 1003 and 1005-

quence number for the cross check scans. The
next two fields are record numbers on the merge
file (MRQG) and represent the first and last re-
cord of the sequence. In the segment shown,
cross-check-scan sequence number 1002 started
with merge file record number 2215 and stopped
on merge file record number 2219. The next
.CCS field gives the number of transitions be-
tween the two objects. This number is one less
than the order of the scan sequence. Thus, cross
check scan sequence 1002 had 4 transitions and
was therefore of order five. Fields 5 and 6 are
numerical object identifiers (as defined in Table
C1) and fields 7 and 8 are mnemonic object iden-
tifiers. The ninth and tenth fields are either
partial flight numbers for aircraft or mnemonics
such as SDW for south down wind or FNL for
final. The next field (11) is the length of the se-
quence in sample periods; to get seconds, divide
this number by 30. The next 2 fields (12 & 13)
give the zones for the two objects. Note that in
sequence 1000, both the data block on flight 501
and the SDW line are in zone 3. Fields 14 & 15
indicate whether the aids are displayed or not
and fields 16 & 17 refer to the speed markers.

1007) the corresponding aid is on.

The next field (18) contains the amount of
time included in a given sequence, which is also
included in either the preceding or following se-
quence. To elaborate, consider the sequence of 3
objects A to B to C. In this study, a sequence was
constrained to 2 objects. Therefore the sequence
would be considered to be two sequences, A to B
and B to C. The dwell time associated with B
would be included in both sequences. As a result,
when the total time for all sequences is summed,
it is considerably larger than the total run time
for the test. Field 18 was used to keep track of
total time and overlapping time. Field 19 is the
display distance in inches between the two ob-
jects. The next 4 fields (2 field pairs) are used for
DICE format only. The first pair gives recom-
mended headings (or recommended speeds) as
and when they appear in the data tag. The sec-
ond pair, the last two fields, includes the current
DICE countdowns.

The format of the record is more precisely
defined in subroutine READSEQ which appears
both in programs SEQNCE1 AND SEQNCE2. It

can also be seen in subroutine PRINTSEQ in the
program CROSS1.

Merge File Record (MRG)
The .MRG file is an unformatted ASCII file

with variable record size. Fields are separated by
commas, and each record ends with a carriage-

return/line-feed. There are 19 fields in the re-
cord, three of which (spares) were not used.
Because of its form, it would be difficult to show a
segment of the file. Fields do not line up neatly
in columns. Therefore a segment of a .PT1 file is
shown; it is a .MRG file formatted using the
PRNMRG program.

THE FPOLLOWING DATA I8 FROM THE FILE, c:\fasa\brennan\mb0édc2l.mrg

The number of records on the file is :
PRINT FROM RECORD # 1000

4832
to 1020

Rec# Tp Typ PFxt PD TgID Dist FrNo TgtX TgtY FixX FixY Hag CD
1000 15 TAG 13 440 631 0.17 221 -0.83 0.27 -0.67 0.25 02210 O
1001 15 TAG 13 428 309 0.06 221 -2.54 -0.10 -2.60 -0.11 02210 0
1002 15 TAG 9 440 309 0.07 221 -2.54 -0.10 -2.52 -0.16 02210 0
1003 15 TAG 129 449 508 0.53 221 1.1% 0.15 1.71 0.06170 022z11 1
1004 80 BLNK 8 10 Jil 99.99 222 ©0.00 0.00 0.00 0.00 02290 O
1005 53 LINE 22 439 8DW 0.10 222 2.69 -2.38 2.67 -2.29 02230 0
1006 0 UNK 5 422 Jil 99.99 222 0.00 0.00 4.18 -4.65 02290 0
1007 0 UNK 11 433 Ji1 99.99 223 0.00 0.00 3.65 -4.58 02290 0
1008 89 OUT 23 10 Ji1 99.99 223 0.00 0.00 0.00 0.00 02290 0
1009 15 TAG 66 441 508 0.43 223 0.96 0.19 1.35 0.02 02210 O
1010 15 TAG 17 432 631 0.23 223 -1.01 0.22 -0.88 0.03 02210 O
1011 15 TAG 18 433 309 0.29 224 -2.76 -0.14 -2.47 -0.17 0z2z10 0
1012 15 TAG 26 441 508 ©0.29 224 0.84 0.20 1.05 0.00 02z10 0
1013 10 A/C 36 447 970 0.43 224 1.97 -1.80 2.39 -1.88 280 102220 1
1014 15 TAG 14 43% 508 0.62 224 0.84 0.20 1.36 -0.14 02210 0
1015 15 TAG 19 435 631 0.31 224 -1.10 0.20 -1.33 -0.01 0zz10 ©
1016 15 TAG @ 429 309 0.45 225 -2.84 -0.15 -2.84 -0.60 0zz10 0
1017 80 BLNK 7 10 Jil 99.99 225 0.00 0.00 ©0.00 0.00 02z90 0
1018 53 LINE 50 436 SDW 0.45 225 2.68 -2.38 2.59 -1.94 02230 0
1019 15 TAG 3¢ 436 508 0.67 225 0.74 0.21 1.14 -0.32 02210 0
1020 10 A/C 73 433 970 0.44 225 1.94 -1.67 2.38 -1.72 280 72z 20 1

The first column is a record number and is
not a field in the file. The first and second fields
are the numerical and mnemonic object identifier
as defined in table C1. The next field (3) is the
length of the sequence in sample periods; to get
seconds, divide this number by 30. The fourth
field is pupil diameter in analog to digital con-
verter counts; to get millimeters, multiply this by
(25.4/2048). Record 1003 has a pupil diameter of
5.6 mm (449 counts). The fifth field is either a
partial flight number for aircraft or a mnemonic
such as SDW for south down wind or FNL for
final. The mnemonic dJil in this field and the
number 99.99 in the next field are examples of
presets which have not been overwritten. They
are used for checking the algorithms and should,
for the most part, be ignored. Note that their
occurrence corresponds to out-of-track records
including blinks and also to in-track records

A-2

where a gaze object could not be found (UNK in
field 2) within the allowable 0.57 inches. Field 6
is the distance on the screen in inches between
the look point and gaze object, when one is iden-
tified. The next field (7) is a pointer to the air-
craft position file (ACP) and a time stamp. It
was computed by subroutine FIXPOINTER in
program FIXPOINT. It gives the record number
of the .ACP file that was searched for targets by
subroutine SEARCH in program FILLMRG. To
get run time in seconds at the beginning of a
simulation update subtract one from the value in
field 7 and multiply by 4, the simulation update
rate. For example, .ACP record 224 referenced in
MRG record 1011 (shown above) started 892
seconds into the run.

The next four fields (8-11) are the real x,y
screen coordinates of the object {u'st and then the

look point. Fields 12 and 13 are for DICE format
only. Field 12 gives the recommended heading
(or recommended speed) only when it appears in
the displayed data block associated with the gaze
" object. With the same constraints, field 13 con-
tains the current DICE countdown. Fields 14
and 15 are not used and field 16 is the zone num-
ber as supplied for the aircraft by the .ACP file.
A "1" in 17 indicates the speed marker is active
and a "1" in field 18 indicates that the aid is on.
Field 19 is not used and is not shown above.

The array type FIXCOMB, defined in sev-
eral programs including CRES8MRG1, FILLMRG,
et. al,, best defines the fields on this record. The
subprogram PUTXX in CRES8MRGI1 writes the
array to the .MRG file. The common utility sub-
routine, GETXXA uses the FIXCOMB data struc-
ture to read one record of the file. GETXXA is
called in a loop: In subroutine FILLBUF in pro-
gram CROSS], in subroutine SEARCH in pro-
gram BEANCNTI1, in subroutine SEARCH in
program FILLMRG, and elsewhere.

Ti Hist File R e
GACP) |

This file is unusual in that it has four record
types in a group, the last of which types changes
form with run format and pattern speed. A
group of records describes the state of the
controller's display during one four-second
simulation interval. This file was searched (by
FILLMRG) to determine what the controller was
looking at for every recorded fixation. Although
having a more complex structure than the other
files, the .ACP file is a formatted ASCII file with
each line terminated by a carriage return/line
feed sequence. Two record groups are shown
below. The first is a DICE display format, 210-
knot approach-pattern-speed run. The second is
a graphic marker format, 210 pattern-speed run.
The two formats are presented to illustrate the
difference in fourth record type, and the 210
pattern speed was selected to show how the speed
change advisory was distinguished from the turn
advisory.

10 14752.12
647 -0.27 2.07 0.73 3.26 3 1
320 -0.40 5.06 0.60 6.25 4 1
674 0.37 11.68 1.37 12.87 4 1
253 -6.18 9.87 -5.18 11.06 3 3
530 4.16 13.81 5.16 15.00 1 2
929 5.86 -1.91 6.86 -0.72 4 4
783 10.01 -6.25 11.01 -5.06 4 4
856 -13.40 18.08 -12.40 19.27 2 2
943 21.53 31.91 22.53 33.10 1 4
181 34.66 -22.96 35.66 -21.77 4 4
0 0 3
674 S170 -1
253 345 + 47
530 240 + 15
12 7492.12
536 -0.35 1.32 0.65 2.51 1 1
804 -0.25 3.62 0.75 4.81 2 1
179 -0.28 7.41 0.72 8.60 2 1l
725 1.24 11.41 2.24 12.60 4 1
700 -3.53 14.28 -2.53 15.47 2 2
996 4.91 10.10 5.91 11.29 4 3
411 -12.33 16.98 -11.33 18.17 2 2
215 -6.38 0.65 -5.38 1.84 3 4
920 -6.21 -6.76 -5.21 -5.57 3 4
631 26.49 -17.17 27.49 -15.98 4 4
836 20.14 29.79 21.14 30.98 1 4
309 23.60 36.11 24.60 37.30 1 4
3 0 0
700 -3.80 14.30 -2.30 14.25 -1.65 13.78 -1.52 13.40
725 1.10 10.30 99.99 99.99 99.99 99.99 99.99 99.99
996 4.90 11.90 4.90 13.70 3.95 14.59 3.35 14.53

The first record of the group tells how many
aircraft were on the screen during the interval.

It also contains time in seconds, which is related
to the traffic sample. This is not time since the

A-3

beginning of the run, but rather since the begin-
ning of the traffic sample. This time was not
used in connection with the oculometer analysis.
In the examples shown, there are 10 and 12 air-
craft respectively. In the next group of records
(starting with record 2), there is one line (or re-
cord) for each aircraft. Each record contains

o the flight identification number,

e the x and y coordinates of the aircraft
given in the simulation frame of refer-
ence,

e the x and y coordinates of the data block
given in the simulation frame of refer-
ence,

¢ a route number, and
¢ a zone number.

The route number indicates corner the post
from which the aircraft entered the pattern.
Routes 1, 2, 3, and 4 correspond to the NE, SE,
SW, and NW corner posts. The zone numbers are
functional as well as area indicators. Zones 1, 2,
3, and 4 correspond to final approach course, base
leg, downwind leg, and everything else. To illus-
trate, a route/zone combination of 3/3 would indi-
cate that the aircraft was on the south downwind
coming from the west. These aircraft descriptors
(the second type of record) always have the same
form.

The next record type, a single record, con-
tains three integers. The numbers indicate how
many aids were active on the display during the
particular interval for the graphic marker, slot
marker, and DICE, respectively. In the first
example above, the numbers are 0,0,3; in the
second they are 3,0,0. Thus, the examples are
from a DICE run and a graphic marker run.
This single record is followed by that number of
aid descriptors, three in each example above. For
the manual format this record always contains
the numbers 0,0,0 and always ends the group.
For this study, no more than one type of aid was
used in a run, but that was not a constraint of
the system. The aid descriptors are different
depending on the type of aid. For the 210 knot
pattern speed graphic marker and DICE runs,
the aid descriptors distinguished between turn
indicators and speed indicators.

The aid descriptor for the DICE has three
forms, two of which are shown in the first exam-
ple above. As shown for flight 253 and 530 in the
example, the descriptor gives the flight number

A4

followed by the suggested heading and the DICE
countdown value. If the latter is negative the
aircraft has gone beyond the recommended turn
point and will be late arriving unless the control-
ler intervenes to make up the time. Sometimes,
the countdown was shown but not the heading.
This occurred only when the countdown was
greater than 60 seconds. The third form is illus-
trated with flight 674 in the first example shown
above. This is the speed change advisory where
the flight number is followed by the suggested
speed (prefixed with the letter S) and the count-
down value. For this study, the suggested speed
was always 170 knots. Nominally, the controller
issued the clearances when the DICE countdown
values went to zero.

For the graphic marker nine numbers were
furnished. The first is the flight number just as
in the aircraft descriptor records. This is fol-
lowed by four pairs of position coordinates (x,y)
given in the simulation frame of reference. The
graphic marker is three connected straight line
segments. These four pairs of coordinates specify
the positions of the graphic marker's vertices.
Flights 700 and 996 in the second example above
demonstrate normal graphic marker descriptor
layout. The graphic speed marker is a single
point on the screen. In the aid descriptor, each of
the last six numbers is set at a constant 39.99.
The flight identifier is followed by a single set of
coordinates for the point location. This can be
seen for flight 725 in the graphic example above.
Nominally, the controller issued the clearances
when the aircraft just touched the marker.

The aid descriptor for the slot marker con-
tains two numbers, the flight number and the y
coordinate in nautical miles (simulation frame of
reference) of the slot marker. The x axis coordi-
nate is not given and stays constant at -.34 nmi.
The marker moves along the extended runway
centerline toward the runway, which is parallel
to the y simulation axis and just below it.
Nominally, the controller issued clearances with
the goal of placing the aircraft in the center of its
slot marker as it proceeded on the final approach
course.

The format of the .ACP record group is more
precisely defined in subroutine TARGETSET in
program FILLMRG. The file is read as #3 in-
dexed by file #4, the .IDX file. The first three
types of records in the group are read in common
code but the last type of record is read using a
'SELECT CASE' structure to differentiate be-
tween the different types of FASA formats.

The Oculometer Data File (DAT)

The .DAT file produced by the oculometer
facility is a random access binary file. Each re-
cord has eight bytes (four 16-bit integers). There
are no record separator bytes such as the usual
carriage-return/line-feed sequence. Thus, for
example, the fifth record spans bytes 33 to 40.
Each record contains data on either an in-track
or out-of-track event depending on whether or
not the instrument was tracking the subject's
eye. For in-track events, the first two fields con-
tain the x and y position coordinates of the look
point given in the display reference frame. The
third field contains the pupil diameter and the
fourth contains the time duration of the fixation.
For out-of-track events, the first two fields con-
tain zeros. The third field contains instrument
status information not germane to this study,
and the fourth contains the time duration of the
event. The times are given in units of 1/30 sec-
ond, i.e., divide by 30 to get seconds. The coordi-
nates and pupil diameter are given in converter
counts. To convert the coordinates to inches on
the display, divide the values by 204.8 (data con-
stant cpi! in subprogram CRESMRGFLE of pro-
gram CRESMRG1). As was stated with reference
to the .MRG file above, to convert pupil diameter
to millimeters multiply the value by (25.4/2048).

The subprogram BI2 in FIXPOINT reads the
.DAT file, appends a fifth integer to it, and writes
(subroutine CRESDT1) the record to the .DT1
file. The data structure DT1 defined in
FIXPOINT is used with the .DT1, DT2, and DT3
files. The appended first byte is derived from the
SCN file. It contains a record pointer to the
-ACP file, and it must be added prior to any filter-
ing. See the code in FIXPOINT for further detail
on these two record structures.

Tl Ocul | S] izati
File (SCN)

The .SCN file produced by the oculometer
facility is a random access binary file. Each re-
cord has two bytes (one 16-bit integer). There are
no record separator bytes such as the usual car-
riage-return/line-feed sequence. The number is
recorded at the beginning of each simulation
update and its value is the record number
(ordinal) of the last .DAT file record stored at
that point in time. This is used by program
FIXPOINT to synchronize the .DAT file to the
.ACP file. The single integer .SCN record is read
into the first column of the buffer array OCSCAN
in program FIXPOINT, subprogram BI1 to be
used as a record pointer to the .ACP file.

A5

Appendix B

Program Block Diagrams

The diagrams presented in this appendix
have proven themselves to be very useful during
the development and maintenance of the source
code presented in Appendix C. The order of the
diagrams corresponds to the (almost) alphabetical
order of the program listings in Appendix C.
They are included here to help anyone who needs
to examine the code in detail. The block dia-
grams show how the programs interact with the
various files. The caption on each figure
attempts to explain the function of the process. A
PC computer was used to do this analysis. The
programs were written in Microsoft Quick Basic.
Certain common devices are used throughout.
These will be explained in order to make the
processes easier to follow.

Each run has an associated name containing
information on subject, run number, format, and
speed. For example, LC12DC21 would be a name
associated the 12th run for subject LC, which
used the DICE format at the 210 pattern speed.
All files associated with this run would use this
name with an appropriate suffix. Thus,
LC12DC21. MRG, LC12DC21.CCS, and
LC12DC21.LOG are the merge, cross-check-scan,
and log file associated with that particular run.
In the diagrams of this section the names of files
are dropped, and the suffix is used to indicate the
type of file being used, e.g., .MRG, .CCS, and
.LOG. In figure B2, for example, the .DTS3 file is
processed by CRES8MRGI1, which produces a
.MRG file. During the processing, information is
appended to the .LOG file for the particular run
being processed. Normally, twelve files, one for
each subject, were processed as a sequential
group. This would represent all the runs for one
display-format/pattern-speed combination. The
names of the twelve runs are listed in
FLEINDX1. The file TOTAL.LOG (figure B2)
contains composite information for the twelve
files. This semi-automated approach made it
possible to use two or three computers at the
same time, each processing a different treatment.
The sharped numbers (e.g., #2 near the .DTS3 file)
indicate the file number used in the correspond-
g source code (Appendix C) and are included for
clarity.

Hopefully the diagrams (along with their
associated source listings) will shed some light on
the individual processing steps. They are not,
however, in temporal order, so in order to clarify
the overall procedure, something needs to be said
about sequence. There are 3 major parts: data
acquisition, data reduction, and data analyses.
Most of the analysis used a commercial program
to generate repeated measures analysis of vari-
ance on statistics derived from the .MRG or .CCS
files. These two files are the output of the data
reduction phase, and the cross-check-scan (.CCS)
file is totally derived (figure B5) from the merge
(MRGQG) file. The input of the data reduction
phase (output from the acquisition phase) are the
.SCN, .DAT, and .ACP files.

During the acquisition phase, it is critical
that the oculometer data be kept carefully syn-
chronized with the simulator data and that posi-
tion accuracy be maintained through frequent
calibrations. The preferred method of synchroni-
zation is to have one computer record all the data
using a single time stamp. In the FASA study,
because of the different processing periods (four
seconds versus 1/30 second), the data were
recorded on two computers and later synchro-
nized using the .SCN file data. During the
experiment, it is wise to carefully observe the
data being recorded and to do quick look analyses
to test its quality. In later stages of analysis, one
may correct mistakes and re-analyze the data,
but in the acquisition phase, an error could result
in having to rerun the experiment. Therefore,
one must acquire data carefully and attempt to
find and correct problems immediately.

The first stage of data reduction (figure B11)
is to synchronize the .DAT file records by adding
to them an aircraft position record pointer (ACP
record number) derived from the .SCN file. Once
synchronized, the programs SRCGDAT (figure
B18) and CUT20 (figure B6) are used to prune
out a few known bad records. Then, the data are
filtered (figure B10) to remove noise and combine
certain contiguous fixations. The filtered data
are then saved (figure B2) in the merge file for-
mat. Many of the .MRG record fields are unde-
fined at this point. Because of the complexity of
the .ACP record, a file index is generated (figure

B3) for each file. The program FILLMRG (figure
B9) searches the .ACP file to determine the likely
object of the controller's gaze. This action
involves a coordinate transformation of the look-
point and, then, a distance computation for each
object on the screen during the particular simu-
lation interval. Once identified, target informa-
tion is transformed into display coordinates and
written into the .MRG record. CROSS1 (figure
B5) generates the cross check file (CCS) by
searching groups of contiguous scans for the
occurrence of this stylized behavior.

BEANCNTI, A1HIST, SEQNCE]1, and SEQNCE2
(figures B1, B8, B15, and B16) derive statistics
from the .MRG, and .CCS files. They were used
in addition to a commercial data base program
and a statistical analysis program. CRISMGX
(figure B4) was used to produce the .MRG file
index. The programs shown in figures 13 and 14
were used to make printed listings of the data,
and those in figures 12 and 17 were used to plot
the lookpoints. The programs in figure 7 were
used to interactively examine the data.

FLEINDX1

T 1

' #7 . #8
.DUM (.MRG) —-)L BEANCNT1 .BC1

Figure Bl. BEANCNT!1 tallies statistics on 3 classes of oculometer objects: unidentified targets, all
other in-track objects, and out-of-track objects. The statistics include very coarse frequency functions on
time duration, zone, and distance between target and lookpoint.

FLEINDX1

#3

.DT3 ————31 CREBMRG1 .MRG

82 #6

LoG
#5
TOTAL.LOG
#4

Figurc B2. CRESMRGT! is a simple program that sets up the .MRG file. After filtering and before the
target search, each oculometer event becomes a record on the MRG file. At this point, most fields have
not yct been filled. Target information will be added by a later process to . MRG.

FLEINDX1 |
#1
.ACP r——e1 CRISIDX .IDX
#3 ' #4

Figure B3. The .ACP file has long variab
duced by CRISIDX is a pointer
lookpoint is associated with a pa
ated simulation output record and to search

rticular radar

le size, multipl
(index) to the first byte of the correspondin

for and extract aircraft pos

e format records. The .IDX file-record pro-

g -ACP record. Each in-track
re BY) uses .IDX to find the associ-
ition data from the .ACP file.

sweep. FILLMRG (figu

FLEINDX1
#3
+MRG CRIBMGX MGX
#6 #7

Figure B4. The MGX index file produced by CRISMGX is used to examine or print scgments or

individual records of the .MRG file. Anexam

B4

ple of its usc is shown in figure B14,

FLEINDX1

#1

«MRG CROSS1

#2

L CRoss.pRT |
#3

Figure BS. Sequences of in-track fixations on the .MRG file which alternate between two screen objects
(such as two aircraft symbols) become a single record on the .CCS (cross check scan) file. CROSS1 does not
artificially limit the order of a scan. It counts transitions until the scan is interrupted. The somewhat
complex logic for identifying cross check scans is in the subroutine FINDAB. The logic can be extended to

include groups of 3 or more objects.

INDEX

*3

.DT2

.DT1 —){ CUT20
¥l

#8

_4 . LOG
"%

; LOG.TOT

L

Figure B6. CUT20 simply excises a group of oculometer events (records) from a file. However it leaves an
audit trail in the individual run logs and collectively in the LOG.TOT file. Index specifies a list of files

including which records need to be removed.

B-S

.IDX

DMPACP

JACP r—-—_—-;..
#3
.DAT r——-—) DMPDAT
/'_8—_—— Screen

DTX DMPDTL

Screen

Figure B7. These three simple programs serve the important function of allowing the analyst to
interactively peruse the contents of the files.

FLEINDX1

vl

.MRG ——> ALHIST .BC1

#7 #8

Figure BS. A1HIST makes two passes through the files to compute normalized histograms of the fixation
times for cach aircraft data block. It computes time duration histograms for three conditions: aid-on, aid-off
and the two combined. This amounts to threc histograms per run. It also produces three histograms
combining all the runs listed in FLEINDX1.

86

FLEINDX1
#1
.MRG -—->1 FILLMRG .DUM | > MRG
#6 #7
. IDX .ACP
#4 43

Figure B9. FILLMRG associates each lookpoint on the .MRG files with a display object recorded on the
LACP file. The resulting .MRG file has information on the lookpoint and the target as well as the distance
between and whether or not the aid is on.

FLEINDX1

DTl FILTERL >
#9

#8 #5

LOG.TOT
#4

Figure B10, FILTERI implements the four filters discussed in the paper. The input file ((DT1) is the
renamed output file (.DT2) from CUT20 (Figure B6). The output file (DT3) has significantly fewer records
after filtering.

FLEINDX1
#3

F OINT
.SCN ‘ IXPOIN .DT1
#1 #6

.DAT

#2

Figure Bi1. FIXPOINT computes the record number of the .ACP time history file corresponding to each
record of the oculometer .DAT file. This number is appended as a fifth ficld to the four .DAT file fields and
placed in .DT1. The logic for associating .DT1 records to .ACP records is in subroutine FIXPOINTER.

FLEINDX1

ﬂ——

. DAT ——> PLTDATFL [——)
#2 |

Screen Printer

Figure B12. PLTDATFL uses the screen print interrupt to plot all the lookpoints from a given run on a
single sheet. The points correspond to the positions on the controller’s display. They are a graphic
description of the scan pattern. With slight modification (to read the 5 byte input) this was also used to look

at the data after flitering.

B-8

.P
_DAT PRNDAT RN P

#1

. PRNDT1 . PRT
48

#1
Figure B13. PRNDAT and PRNDT1 are simple but uscful programs that allow one to copy segments of the
data files to a printable file. It is more convenient to use the .PRN and .PRT files than to go directly to the

printer. The programs are interactive with the user supplying the file name and first and last record of each
segment. The .DT? files have S fields and the .DAT files have four.

.MGX
T #1

.MRG | PRNMRG .PT1
#2 #8

Figure B14 PRNMRG is used to write groups of adjacent .MRG file records to the .PT1 file for subsequent
scrutiny. The program is interactive with the user supplying the file name and the first and last record of

each scgment to be copled.

FLEINDX1
#1

.CCS aI SEQNCEL .PR1
#7 #8
———alwl_
#8

Figure B1S. SEQNCE1 computes the average and standard deviation for the duration of all cross check
scans and the distances between all corresponding pairs of targets. In addition to the overall values, it
computes these parameters for each defined zone pair and order of cross check scan. The source program as
shown uscs 4 orders of cross check scans and 10 defined zone pair. The results for each run listed in
FLEINDX1 are written into a corresponding .PR1 file. The accumulated results for all runs are written to

the ZNETOT.PR1 file.

FLEINDX1
#1
.CCS r“"[SEQNCEZ .PR2
#8
ZNETOT . PR2
#8

Figure B16. SEQNCE2 computes the average and standard deviation for the duration of all cross check
scans and the distances between all corresponding pairy of targets. In addition to the overall values, it
computes these parameters for cach defined farget pair and order of cross check scan. The source program
as shown uses 4 orders of cross check scans and 20 defined garget pairs. The results for cach run listed in
FLEINDX1 are written into a corresponding .PR2 file. The accumulated results for all runs are written to
the ZNETOT.PR2 file. Normally, FLEINDX1 would have 1 file name for each subject for a given treatment.

B8-10

FLEINDX1
#1

.DAT F—— sIXIN

#2

Printer

Figure B17. SIXINI1 is a plotting program almost identical to PLTDATFL (figure B12) above except that it
puts six scatter plots on a single page to facilitate comparisons. Each plot depicts all lookpoint positions for a
run without providing information on duration or sequence.

FLEINDEX

#2
.DAT —> SRCGDAT P.OUT
#1 #5

Figure B18, SRCGDAT was used to find abnormally long in-track and out-of-track records on the .DAT
files. Once identified, they were checked against logs from the corresponding run and the recollections of the
researchers. Some records (an extremely small amount) were then purged as false data resulting from system

malfunctions.

B-11

Appendix C

Data Reduction and Analysis Source Code

Table of Contents

PROGRAM BEANCNT L........itierennreeessssnecssssssssssessessenssseesssssassessonsssssassas 1

SUB FIN ...cciieiircneerninianicssnsesssncsssssasessssssssssasssssssssssasssssassssssssassssssasses 3

SUB INIT (filenames$, filename1l$)uueeeeeeeeenvinnnerrseecseresssesnssees 3

SUB PROUT ...ccvirrneetenecccsssssssssassersessssssssssensessasssssassassassessessssssssssasses 4

SUB SEARCH.iiircneeteersssseeecsssssseressssssosessasssssessassossesssssssassssass 6

SUB SRCHWERERKcccocinnnnnerirreresssersnsaseesaossessessssassessssssssssssesssassasssss 7
PROGRAM CRESMRGN........eerirecrrcrisssssvassernessesssssnsssssosssssssssssessaassassens 10
SUB BI2 (BIP%()).eeeeeeececranecsccssueeesssssaneersersassosessssesassssassassssssassasssssonse 11
SUB CRESMRGFLE........eieeenrccsssssssnrersensessssssssessssscsssssssssensesse 12
SUB FINcoiiiricnnrnereerecsersassssrestersesssssssssssassesessesssssssssssassssassassassossanse 14
SUB INIT (FILENAMES, FILENAMELS$)cccoovvvnererececcecscsseccssseene 15
SUB PUTXX (FILENOY) ccuueveeeierrerisrssssssereessereessassasessesssssssssassesssase 16
PROGRAM CRIBIDXcccovceeerersssssrersersersassansasaasaessessssssssessnsessssssssssasssssssss 18
SUB FINtiicnnnnerenscnsentesisssssseesssssssssssssasassssssasasssssssssssassssasssssnene 19
PROGRAM CRIBMGXemrereercecsssssrssnsersessosssssasssssssessessssssassssssssesssassasss 21
PROGRAM CROSSIovcivrneerrerrececssssecssessessesssssessssssssessessesssssssssasssssssssosse 22
SUB FILLBUFeicivineieiinnsteessesssstsssssssssessssssssesssssassessssssesssases 24
SUB FIN ... ootiiiiiirirnrteeeseersessssssssasseressessssssssesssssesssssssssnssssssssssssssssssssses 24
SUB FINDAB (JOK).....cocouviurereereessssssenserresssssssesssassessssssassssaseassassans 25
SUB INIT (FILENAMES, FILENAMEILS)cccovvteeereeserscrcrrnnencenes 28
SUB PRINTSEQ (LAPOVER)......cccoteenrnrtersenrsssesssssesessssncssssnssossse 29
PROGRAM CUTZ20.....ccccccmmnnmmnneerecsisrsrensersecessssssssssssssessssssssssaseansesssassasssssns 31
PROGRAM DMPACHPeeerieneciccnrnsntesecesesssssstessssssssssssarssssssseassassssssssses 33
PROGRAM DMPDATcciiitiinitnenneniensecsessessssssssssssssssssssssssssssssssesssssnssssssess 35
PROGRAM ATHIST ... civiiininrteriencsscsssssesseossesssssssssssssssseasssssssssissssasssassessans 36
SUB ACCUMULATEoueeeteeeeeteeeeeereeeseesesetsssesessressesseseansesssssssssses 38
SUB HISTOGRAM.......ccovcrrrnreniteereressesssnsestarassessssssssstsssssssssssssssassanse 39
SUB INIT (filename$, filename1$)occeervereencrccnnesencnennenennne 40
W SUB PROUTRcurcreseenrsnesassssssssssssssssesssssssssassssassssnsssssssesssass 41
SUB SEARCH........eeeerrnneereereeseeeanseseessessssseneans eeresessessersesssassenennes 43
PROGRAM DMPDT L...ueeeeireiirirrennieeeeressssssnsesesssessasssssassessesasssssssassassasssane 45
PROGRAM FILLMERG Gcocttieiiiiirenrareeeiessesannssasessssssssssansasssessssssssssssssnaane 46
SUB FINcoiiiiivenrrnrnrereresessscssssssanesresessssssassssaessssssssssssssessassssssssssssensases 47
FUNCTION HIT% (VL%, ARRAY%(), N%) cccceeeeeerrnrrnnnneneneerecceccecens 48
SUB INIT (FILENAMES, FILENAMEILS) ...cccccvetriiereercesnenecseeseeseenns 48
SUB PICK X!, Y!, TOTSYM%, K, DISTMIN!) ...cooreeirrerrrereenrcreeneenn 50
SUB PUTXX (FILENO®) cccevteeerririereereessessssesasesssssssasasssssssessassasssassenes 52
SUB SEARCHuueeerericeeccssnneentercesssssssnssssessesssssenssssssssassasssssssssassasse 52
SUB TARGETSET (FRAMENO%, TOTSYM%, NODICE%)......... 56

PROGRAM FILTER L.......uiiiininininninninsessnsssssssessasesssessesssesssasssnsessassanes 60

PROGRAM FIXPOINTcoocniiiteisnririssncssassssesssssansssssssssssssssnsssssssstssssssassases 65

SUB BI1 (BIP%()) cecovceecsscssessessosaessessessssasssssssssssssassassasassansasssssassassassass 66
SUB BI2 (BIP%()) .cceorsessesrnssssssssarssnssnsensssassesssssassasssossassasssassassasssasasces 66
SUB CRESDT L..ccuvviiiccernneeeeccssessssesssssssessssasesssssansassssstasssssssssssssssasssssss 68
SUB FIN ..o ooeeeirccreiesessressssassessasasssassssssstassssssssssassasasesssssssssssssssansassansassans 69
SUB FIXPOINTER.......cccooueeecccssentssscsssstesssssnsesssssonsissssansesssssssssasssssanses 69
SUB INIT (FILENAMES$, FILENAME1S8).....ccccocconiisininncianienenianes 71
PROGRAM PLTDATFL.....ctiereicneniisimesniessnnessasssssssssssssssssasssssossnssssansassasss 74
PROGRAM PRNDATcccoinmrerssnniosessssssssnressanssssssnsssssssssssssssssasssnsasassossssse 76
PROGRAM PRNDT L...cooceeeriierecssseessossesssssassssassessasaessssssssanssssasssssansassansesase 77
PROGRAM PRNMBRGcoicovmeeninnissssserssssarssssasessassassasssssasssssanssssassessantasss 78
Program QKIOOK......ciiiunnnininnienssisisninsisisnisininsnsnssssssnsssssnissssssssssenns 80
SUB BI1 (BIP%()) ...cecercensancarsersensacsassassassassassnssassassorsasassassansassassassassaes 82
SUB BI2 (BIP%()) c.ccceerterencsnirisanasssassssnsssessssssssssasssssssssansnsssssssssssssnsas 82
SUB CRESMRGFLEccccovveieenniinisessssssesssssssssssnssssasssssastassassasssnanes 84
SUB FIN....ocoicceeeeesssasressassecssssesssssssosssssssssasssssasessssnssssssssssasesssssssssssansesss 85
SUB FIXPOINTER......cccereccirntenccssersssessssssancosssssssssssssessassasnassssssssnssss 87
SUB GETXX (FILENO%) ccccoereisieensurnsnicsanssanssecssssssscssosssassansonsassssassss 89
SUB INIT cooeieeicercssesssnseesssssessssassssssssssssssssssnssssansasssssssssssesssasessssssssssas 89
SUB PRNDAT (STRT&, NOR%)ccvriirerinrnrnennncnnieesscsssecssnessinsanns 91
SUB PUTXX (FILENO) «vcoveiierieseecsasssneesaessassssessassssssssssaessansonsasansaase 92
PROGRAM SEQNCET]ccoiviiiiiiininnesnesenessissesissicsissssssssssssssssssstossssessasseses 93
SUB FILBLNEK L...ouvetiiiicrererececrsssnnessssssssesssssassossssaasassssnsssssssssossessssasess 95
SUB FINDTGTPL (L) ..cccocoveeriennninssassocssssissassesssaesssnssssssssssssassasasssasans 95
SUB INIT (FILENAMES$, FILENAMELS$)...cccccccesnnennncncnannnacsacses 97
SUB PRNZONE (ZONEQ)...ccccccecsresstrsaniessanssaasssnsessassssessasssssssssansssaase 98
SUB READSEQcovciiiiinniisensnssersanssnorsssssssisssssssssesassssssnssnssssasassssssss 99
PROGRAM SEQNCERucconiuinrnirenenrenearasiasisseasisssssessossesssnsssasssssasesssssassnse 102
SUB FILBLNEK Loetiiniciirerecssssnsssssssssssesssssassssssssassassesssssssssssassssasns 103
SUB FINDTGTPL (L) ecoorererecrseisssesticsssnecssssassssasssssanssssessssssnssassssascans 104
SUB INIT (FILENAMES, FILENAME1S$).....ccccoccenenennnininniicannnes 106
SUB PRNTGTS (TRGTS() ccccorernuesrerirsressoreesansssassssssssssssssnsssaassssaasas 107
SUB READSEQcccoverieniesisienssneseisnessassessasssssssssstssesssesassasssasaasssnosses 109
PROGRAM SIXINT ...ouciccienereerrerrsseesssnessssssssesssseosanessansssstsssesssssessassssasssnnasss 111
PROGRAM SRCHDATcoeervrienrntsnsssercsssanssssassessnessssssessssssssasasssssasssaassasses 113
COMMON UTILITY SUBROUTINESitiiiniiinnniiineisineeisssannscsniases 115
FUNCTION LOGS (SBS$, A$) ..cccocreriiinintrrecrinnnntccsssinnssssnissesssssansesaane 115
FUNCTION LOGSS (SB$, A$)..ccoireriniininsinninnsnnisserssssascesssssesssnsssasans 115
SUB GETXXA (FILENO)...cocccieininnssnesanssassssmssanssnssssssansssnsssssscsssses 115
SUB GETXXB (FILENO%, NEOFMRQG)...cccccccvieninniniinnsinracsinssnsonss 116
SUB YESORNO (A$, BS) ..ccccoenrerrnnrecsinnisnnsssnesssssssesssasssassasansssasassassse 116

CAi

PROGRAM BEANCNT1

DECLARE SUB PROUT ()

DECLARE SUB SRCHWRK ()

DECLARE SUB FIN ()

DECLARE SUB INIT (filename$, filenamel$)
DECLARE FUNCTION LOGS (SBS, AS)

DECLARE FUMNCTION LOGS$ (SB§, AS)

DECLARE SUB SEARCH ()

DECLARE SUB GETXXA (FILENOS%)

DEFINT I-N

CONST pi! = 3.14159

CONST SF! = .472, XOFF! = -5.04, YOFF! = -.9, cpi! = 204.8, alpha

-===>! = -11.5 * pi! / 180, runoff! = -, 34

CONST big! = 3!, little! = 1!
TYPE FIXCOMB

END
DIM
DIM

DIM
DIM
DIM
DIM

TGTTYPEN AS INTEGER 'NON ZERO MEANS HIT
TGTTYPEC AS STRING * 4 'TARGET TYPE
FIXLNGTH AS INTEGER
PUPDIAM AS INTEGER

TGTID AS STRING * 3 'ID OF CLOSEST TARGET
DISTANCE AS SINGLE '"BETWEEN CLOSEST TARGET AND FIXATION
FRAMENO AS INTEGER 'TIME HISTORY FRAME #
TGTX A8 SINGLE 'TARGET POSITION
TGTY AS SINGLE

FIXX AS SINGLE 'FIXATION POSITION
FIXY AS SINGLE

HEADING AS STRING * 3 '‘DICE
COUNTDOWN AS INTEGER 'DICE
CONTFIX AS STRING * 1 'IS THIS

~===>A CONTINUATION OF THE PREVIOUS FIXATION
CROSSCHECK AS STRING * 1
ZONE AS STRING * 2 'WHAT AREA OF THE TUBE IS THE FIXATION?

SPEED AS STRING * 1 'SPLADT S-on, F-off
AIDON AS STRING * 1 ‘A-on, F-off
SPARE AS STRING * 8

TYPE

ARAAS

OTN(1 TO 4) AS INTEGER, UNKN(1l TO 4) AS INTEGER, ITN(1 TO 4)
---->A8 INTEGER, DISTN(1l TO 4) AS INTEGER

OTT(1 TO 7), UNKT(1 TO 7), ITT(1 TO 7) AS SINGLE, TT

ZONEN(1 TO 7) AS INTEGER

DISTL(1 TO 7) AS SINGLE

frmt$

Crmt$ = "R /7 HERE NBERE /7 BRR RE RREE R NN RN RE R

DIM
DIM
DIM
DIM
DIM
DIM
DIM

—===DHN N4 REE BE¥ 1 1 /)0
XX A8 FIXCOMB
XXX$
IAID AS INTEGER
BI1P(1 TO 7) AS INTEGER'Buffered Input 1
BI2P(1 TO 7) AS INTEGER'Buffered Input 2
BOP(1 TO 7) AS INTEGER '‘Buffered Output
FILEDUM$, FILEMRG$, FILEBC1§

DIM FILEDUMA, FILEMRGS, FILEBC1%

DIM NUMINTRACK, NUMOUTTRACK AS INTEGER

DIM SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
' *+ FILE NUMBERS **

! #1 FILE INDEX #2 #3 'modified 1/5/93
! #4 #5 #6
! #7 DUM #8 BCl #9

DIM PAGES$, FONTS$

DIM SPSINV!, SBS$

SPSINV! = 1 / 30: SB$ = " (BEANCNT1 "

NOSTATS = 10

DIM STATXS (NOSTAT%), STATYS (NOSTAT%) AS SINGLE

DIM STATID (NOSTAT%) AS STRING * 4

DATA "DEN 1] ’ n Ioc n ' "OM n ’ "KEANH ' 1] FLTS n ’ "vas“ ’ IIBYSN" R 1t TROz“ ‘ IIDRK
———->0" , "JASN"

FOR I = 1 TO NOSTAT%: READ STATID(I): NEXT I

DATA 2.38,-19.49,-0.3,19.44,10.92,-10.24,-23.07,-8.22,29.42,14.67

FOR I = 1 TO NOSTAT%: READ STATXS(I): NEXT I

DATA -.63,24.92,6.1,28.79,14.1,14.1,-26.08,-11.24,-19.56,-9.23

FOR I = 1 TO NOSTAT%: READ STATYS(I): NEXT I

PRTCONTROL$ = CHRS$ (33) + "R" + CHRS$ (33)

PAGES = PRTCONTROL$ + " ;PAGE;EXIT;" 'OFFICE
FONT§ = PRTCONTROL$ + ";RES;FONT 62; EXIT;" 'OFFICE
'PAGES = CHR$ (12) ' HOME
'"FONT$ = CHR$ (27) + CHRS$ (80) ' HOME

DIM SINAL!, COSAL!
SINAL! = SIN(alpha!'!): COSAL! = COS(alpha')
XXXS = "#8 N\ HHEE HREE O\ O\ R B0 FERE RBRE_ RE BB NE AR RN W

—===>. 44 HHH BEHHE 1 1 \\m
AAAAS = " MAIN-START MAIN LOOP"
INPUT " Enter full file descriptor for index file ", index$
OPEN index$ FOR INPUT AS #1
INDEX1$ = LEFTS$ (index$, LEN (index$) - 4) '‘modified 1/5/93
FILEBC1$ = INDEX1$ + ".BCl": FILEBCl% = 8 'modified 1/5/93
OPEN FILEBC1$ FOR OUTPUT AS #FILEBC1% 'modified 1/5/93

DO WHILE NOT EOF (1)
INPUT #1, filename$
IF LEN(filename$) < 8 THEN EXIT DO 'modified 1/5/93
filenamel$ = RIGHTS (UCASES$ (filename$), 8)
CALL INIT(filename$, filenamel$)
CALL SEARCH

PRINT LOGS$ (SB$, " FINISHED SEARCH " + filenamel$)

CALL PROUT

CALL FIN 'Close FILES
LOOP
CLOSE 1, 8 'modified 1/5/93

PRINT AAAAS$

--

--

END ' MAIN PROGRAM 'DUMMYPAGES$?x?;PAGE;EXIT;

SUBFIN

THERRERRREN
'PUYPOB®. . .« vttt o v v eens \ Close all files, scale and output a few
----> statistics

'Parameters............. \

'Other input data....... \ SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK,
-===>NUMINTRACK, NUMOUTTRACK

'Input files............ \

'Ooutput files........... \

'Other output data...... \

'Function calls........ .\ LOGS

tSubroutine calls....... \

Comments.co00.. \

R 12222212

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
IF NUMINTRACK <> 0 AND NUMOUTTRACK <> O THEN
PRINT LOGS$ (SB§, "NUMBER OF IN TRACK FIXATIONS= "); NUMINTRAC

~===>K; ' totals for .txt file
PRINT LOGS$ (SB$, "NUMBER OF OUT TRACK FIXATIONS="); NUMOUTTRA
---->CK

PRINT USING "& ###### OR ####.## SECONDS"; LOG$ (SB§, "TOTAL
---->TIME IN TRACK IS "); SUMINTRACK; SUMINTRACK / 30

PRINT USING "& ###### OR ####.#¥# SECONDS"; LOGS$ (SB$, "TOTAL
---=~>TIME OUT TRACK IS "); SUMOUTTRACK; SUMOUTTRACK / 30

PRINT USING "& ###### OR #### ## SECONDS"; LOG$ (SB$, "TOTAL
---->FIXATION TIME IS "); SUMFIXLENGTH; SUMFIXLENGTH / 30

PRINT USING "& ###.## OR ##.## SECONDS"; LOGS$ (SB$, "AVERAGE
---->IN TRACK FIXATION I8 "); SUMINTRACK / NUMINTRACK; SUMINTRA
---->CK / NUMINTRACK / 30

PRINT USING "& ###.## OR ##.## SECONDS"; LOGS (SB$, "AVERAGE
---->0UT TRACK FIXATION IS "); SUMOUTTRACK / NUMOUTTRACK; SUMOUT
--==>TRACK / NUMOUTTRACK / 30

END SUB ' FIN 'DUMMYPAGES$?r?; PAGE ;EXIT;

SUB INIT (filename$, filename1$)

THENRERRNEN

'TPUXpoOSe.t \ Initialize parameters on both circular
---->buffers

! \ Initialize sums to zero. Let user choose partic-

! \ ular run for analysis. Determine aid type for

' \ subsequent branching. Open FILESCN$, FILEDATS,

' \ FILEACPS and store their lengths.

'‘Parameters............. \ none

'Other input data....... \

'Input files............ \ FILESCN$, FILEDATS, FILEACPS$

tOutput files........... \

'Other output data...... \ File names & unit #'s. Initialized vari

C-3

--—-->ables, sums
' \ and pointers and the branch variable IAID

'Function calls.........\ LOG$

tSubroutine calls....... \ none

‘Commeants.co000-.. \ I don't think I'm using this BOP stuff.
THRNERRR AN

SHARED OTN() AS INTEGER, UNKN() AS INTEGER, ITN() AS INTEGER, DIS
-—-=>TN() AS INTEGER

SHARED OTT(), UNKT(), ITT() AS SINGLE, TT

SHARED ZONEN() AS INTEGER

SHARED DISTL() AS SINGLE

SHARED BI1P() AS INTEGER 'BufferedInput 1
SHARED BI2P() AS INTEGER 'BufferedInput 2
SHARED BOP() AS INTEGER 'Buf feredOutput

SHARED FILEDUMS, FILEMRG$, FILEBC1S$

SHARED FILEDUMS, FILEMRGS, FILEBCl#%

SHARED IAID AS INTEGER

SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG

SB§ = " (INIT "

*SIZE,FIRST,LAST, TRIG,NREC, NEOF, Pl

I = nscanbuf: BI1P(1l) = I: BI1P(2) = 0: BI1P(3) = 1: BI1P(4) = .2
—-————> % I

BI1P(5) = .7 « I: BI1P(6) = 0: BI1lP(7) =1

'FOR L = 1 TO 7: print BI1P(L): NEXT L

I = nfixbuf: BI2P(1l) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) = .2
———=>% I

BI2P(5) = .7 * I: BI2P(6) = 0: BI2P(7) =1

I = nfixbuf: BOP(l) = I: BOP(2) = 1: BOP(3) = 1: BOP(4) = .9 * I

BOP(5) = .8 * I: BOP(6) = 0: BOP(7) 1

TT = 0
FOR I = 1 TO 4: OTN(I) = 0: UNKN(I)

0: ITN(I) = O: DISTN(I) =0

--=-=->: NEXT I
0: ITT(I) = O: DISTL(I) = 0
~===>: ZONEN(I) = 0: NEXT I
OTT(6) = 1000000: UNKT(6) = 1000000: ITT(6) = 1000000: DISTL(6) =
--=-~> 1000000

FOR I = 1 TO 7: OTT(I) = O: UNKT(I)

SELECT CASE MID$(filenamel$, 5, 1)
CASE llM"
IAID = 1
CASE "D"
IAID = 2
CASE "G"
IAID = 3
CASE "S"
IAID = 4
CASE ELSE
IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOG$ (SB§, "CASE FROM FILENAME MUST BE MN,D
---->C,GR or SL"): PRINT : STOP

C4

IAID1 = VAL(MID$ (filenamel$, 7, 1))

IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOG$ (SB$, "CASE FROM FILE
--==>NAME MUST BE 170 OR 210"): PRINT : STOP

IAID = IAID * 10 + IAID1: PRINT IAID

'FILEDUMS = FILENAMES$ + " .DUM": FILEDUM% = 7 'modified 1/5/93

FILEDUMS = filename$ + ".MRG": FILEDUMS = 7 ' modified 1/5/93
FILEMRGS = filename$ + " .MRG": FILEMRGY = 6
'FILEBCI$ = filename$ + ".BCl": FILEBCl% = 8 ' COMMENT

-—==>: FILE NAME SHOULD LOOK LIKE
' "C:\FASAFILE\CRONE\CC10SLCE"

--
--

--

END SUB ' INIT ' DUMMY PAGE § ?r?;PAGE; EXIT;

SUB PROUT
SHARED FILEDUMS, FILEMRGS$, FILEBC1$
SHARED FILEDUMS, FILEMRGS%, FILEBC1%
SHARED OTN() AS INTEGER, UNKN() AS INTEGER, ITN() AS INTEGER, DIS
---->TN() AS INTEGER
SHARED OTT(), UNKT(), ITT() AS SINGLE, TT
SHARED ZONEN() AS INTEGER
SHARED DISTL() AS SINGLE
SHARED SPSINV!, SB$
8B$ = " (BEANCNT1 "
'OPEN FILEBC1$ FOR OUTPUT AS #FILEBC1% ‘modified 1/5/93
PRINT #FILEBC1%, LOGS$ (SB$, FILEMRG$) ‘'modified 1/5/93
PRINT #FILEBC1%, USING "Total time ##¥##.# OT #¥#¥.# IT-UNK ##
——==>##.# IT ####.# IN SECONDS"; TT * SPSINV!; OTT(1l) * SPSINV
—===>1; UNKT(1) * SPSINV!; ITT(1l) * SPSINV!
X1! = 100 * OTT(1) / TT: X2! = 100 * UNKT(1) / TT: X3! = 100 * IT
-===>T(1) / TT: X4! = 100 * UNKT(1) / (UNKT(1) + ITT(1))
PRINT #FILEBC1%, USING " OT ##.#% IT-UNK
———=>##.#% IT #4.#% UNKASSTOTT ##.#8%"; X1!; X21; X3!; X4!

---------- @ ® 8 % ¢ 5 8 8 B 8 4 5 e B e B B e 8 e e 8 s e s s S E S S E S e s e e e e OO ee o

PRINT #FILEBC1%,

PRINT #FILEBC1l%, "S*30--%T Min Max Mean sSD
-——=> <4 4-12 >12 v

FM1§ = " ## (2222 L B 1 #4.8% #H_ ¥ HE. B

FM28 = " #. 44 .44 H.oHE RN #H. 45 #4_ 4% HE W

TOUL Of CTBOK . . ottt vt vt eevennoctoanonsnssosastaasoassnssacssnsnass
X1! = OTT(1l) / OTN(1l): X2! = SQR(OTT(5) / OTN(1l) - X1! * 2)
X3! = 100 * OTT(2) / OTT(1): X4! = 100 * OTT(3) / OTT(1l): X5! =1
———=>00 * OTT(4) / OTT(1l)
PRINT #FILEBC1l%, "OT ",
PRINT #FILEBC1%, USING FM1$; OTT(6); OTT(7); X1!; X2!'; X3!'; X4!;
—-===>X5!
'in track target unidentified................ ittt
X1! = UNKT(1) / UNKN(1l): X2! = SQR(UNKT(5) / UNKN(1l) - X1! * 2)
X3! = 100 * UNKT(2) / UNKT(1): X4! = 100 * UNKT(3) / UNKT(1): X5!
~~-=> = 100 * UNKT(4) / UNKT(1)
PRINT #FILEBCl%, "IT-UNK ",

Ccs

PRINT #FILEBC1%, USING FM1$; UNKT(6); UNKT(7); X1!; X2!; X3!; X4t

--==>; X5!

'in track target identified............... i
X1! = ITT(1) / ITN(1l): X2! = SQR(ITT(5) / ITN(l) - X1t ~ 2)

X3! = 100 * ITT(2) / ITT(1l): X4!' = 100 * ITT(3) / ITT(1l): X5! =1

-===>00 * ITT(4) / ITT(1)

PRINT #FILEBC1l%, "IT ";
PRINT #FILEBC1%, USING FM1$; ITT(6); ITT(7); X1!; X2!; X31; X4!;
-—=-=>X5!
'distance lookpoint to target.............. ..ottt
PRINT #FILEBC1%, " <.25 .25-.5 >.5 "
X1! = DISTL(1) / DISTN(1l): X2! = SQR(DISTL(5) / DISTN(1) - X1t #
-——=>2)

X3! = 100 * (DISTN(2) / DISTN(1l)): X4! = 100 * (DISTN(3) / DISTN(
——==>1)): X5! = 100 * (DISTN(4) / DISTN(1))
PRINT #FILEBC1%, "DIST ",
PRINT #FILEBC1S%, USING FM2$; DISTL(6); DISTL(7); X1!'; X2!; X3!'; X
---=>4!; X5!
'Array contents for checking............ .ottt
PRINT WFILEBClS%,
PRINT #FILEBCl1%, " # of records-Total, Time <4, 4-12, >l12"
FOR II = 1 TO 4: PRINT #FILEBC1%, OTN(II); : NEXT II: PRINT #FILE
---->BC1%, "OTN"

FOR II = 1 TO 4: PRINT #FILEBC1%, UNKN(II); : NEXT II: PRINT #FIL
---=->EBC1%, "UNKN"
FOR II = 1 TO 4: PRINT #FILEBC1%, ITN(II); : NEXT II: PRINT #FILE

---=->BC1%, "ITN"
PRINT #FILEBC1%,
PRINT #FILEBC1%, " # of records-Total, Dist <.25, .25-.5, >.5"
FOR II = 1 TO 4: PRINT #FILEBC1%, DISTN(II); : NEXT II: PRINT #FI
---«~>LEBCl1%, "DISTN"
FOR II = 1 TO 4: PRINT #FILEBC1%, ZONEN(II); : NEXT II: PRINT #FL
---=>LEBC1%, "ZONEN"
PRINT #FILEBCl%,
PRINT #FILEBC1%, " Time in counts-Total, Time <4, 4-12, >12, SSQ,
----> Min, Max"
FOR II = 1 TO 7: PRINT #FILEBC1%, OTT(II); : NEXT II: PRINT #FILE
--=-=->BC1l%, "OTT"
FOR II = 1 TO 7: PRINT #FILEBC1%, UNKT(II); : NEXT II: PRINT #FIL
~~==>EBC1%, "“UNKT"
FOR II = 1 TO 7: PRINT #FILEBC1%, ITT(II), : NEXT II: PRINT #FILE
--=-=->BC1l%, "ITT"
FOR II = 1 TO 7: PRINT #FILEBC1%, DISTL(II); : NEXT II: PRINT #FI
--=-=->LEBC1%, "DISTL"
PRINT #FILEBCl#%, USING LF 1 08 £ LUEES1
PRINT #FILEBCl%,
PRINT #FILEBClS%,
PRINT #FILEBCl#%,
END SUB

SUB SEARCH
THERRRRR Y

c-8

‘Parameters............. \ none
'‘Other input data....... \

‘Input files.......... ..\ FILEDUM$
'Output files........... \

'Other output data...... \
'Function calls......... \ LOG$
'Subroutine calls....... \ GETXXA,
'Comments.......co0c000n \
TRERENRERES

SHARED AAAAS
SHARED FILEDUMS, FILEMRGS$, FILEBC1$
SHARED FILEDUMS, FILEMRGS%, FILEBCl%
SHARED XX AS FIXCOMB
SHARED SINAL!, COSAL!
SB§ = " (SEARCH "
FRMTACS = "### \ \ SH#_ 00 SR 458 B8\ \ #RE_HF SN 48
FRMTSYMHDRS = " ####4 #44 484 #¥4n
CLOSE 7
'OPEN FILEMRG$ FOR INPUT AS #6
OPEN FILEDUM$ FOR APPEND AS #7
IF LOF(7) = 0 THEN
PRINT LOG$ (SBS, "DUM FILE CAN NOT BE FOUND ")
EXIT SUB
ELSE
CLOSE 7: OPEN FILEDUM$ FOR INPUT AS #7
AAAAS = "SEARCH-START"
DO WHILE NOT EOF(7)
CALL GETXXA(7) 'GET THE RECORD INTO XX
CALL SRCHWRK
LOOP
CLOSE 6, 7
END IF

--

--

END SUB 'SEARCH 'DUMMYPAGES$?r?; PAGE; EXIT;

SUB SRCHWRK

SHARED XX AS FIXCOMB .

SHARED OTN() AS INTEGER, UNKN() AS INTEGER, ITN() AS INTEGER, DIS
-—--->TN() AS INTEGER

SHARED OTT(), UNKT(), ITT() AS SINGLE, TT

SHARED ZONEN() AS INTEGER

SHARED DISTL() AS SINGLE

TT = TT + XX.FIXLNGTH

SELECT CASE XX.TGTTYPEN
CASE 80, 89 'OUT TRACK

OTN(1l) = OTN(1l) + 1: OTT(1l) = OTT(1l) + XX.FIXLNGTH

TEMP = XX.FIXLNGTH: TEMP = TEMP * TEMP

OTT(5) = OTT(5) + TEMP '908Q's
IF XX.FIXLNGTH < OTT(6) THEN OTT(6) = XX.FIXLNGTH 'MIN
IF XX.FIXLNGTH > OTT(7) THEN OTT(7) = XX.FIXLNGTH 'MAX

c-8

SELECT CASE XX.FIXLNGTH

CASE IS < 4 'Noise 2
OTN(2) = OTN(2) + 1: OTT(2) = OTT(2) + XX.FIX
---=->LNGTH

CASE IS < 13 'Blink 3
OTN(3) = OTN(3) + 1: OTT(3) = OTT(3) + XX.FIX
~===>LNGTH

CASE ELSE 'Long out 4
OTN(4) = OTN(4) + 1: OTT(4) = OTT(4) + XX.FIX
---=>LNGTH

END SELECT

CASE O 'In but can't ID target

UNKN(l) = UNKN(l1l) + 1: UNKT(l) = UNKT(l) + XX.FIXLNGTH

TEMP = XX.FIXLNGTH: TEMP = TEMP * TEMP

UNKT (5) = UNKT(5) + TEMP 'SOSQ's
IF XX.FIXLNGTH < UNKT(6) THEN UNKT(€) = XX.FIXLNGTH'MIN
IF XX.FIXLNGTH > UNKT(7) THEN UNKT(7) = XX.FIXLNGTH'MAX
SELECT CASE XX.FIXLNGTH

CASE IS < 4 ! 2
UNKN(2) = UNKN(2) + 1: UNKT(2) = UNKT(2) + XX
-===>,FIXLNGTH
CASE IS < 13 ' 3
UNKN(3) = UNKN(3) + 1: UNKT(3) = UNKT(3) + XX
---=>_.FIXLNGTH
CASE ELSE ! 4
UNKN (4) = UNKN(4) + 1: UNKT(4) = UNKT(4) + XX
---->.FIXLNGTH
END SELECT
CASE ELSE 'In with target
ITN(1l) = ITN(1l) + 1: ITT(1l) = ITT(l) + XX.FIXLNGTH
TEMP = XX.FIXLNGTH: TEMP = TEMP * TEMP
ITT(5) = ITT(5) + TEMP 'S80SQ's

IF XX.FIXINGTH < ITT(6) THEN ITT(6)
IF XX.FIXLNGTH > ITT(7) THEN ITT(7)
SELECT CASE XX.FIXLNGTH
CASE IS < 4 ! 2
ITN(2) = ITN(2) + 1: ITT(2) ITT(2) + XX.FIX

XX.FIXLNGTH 'MIN
XX.FIXLNGTH 'MAX

—-=~=>LNGTH

CASE IS8 < 13 ! 3
ITN(3) = ITN(3) + 1: ITT(3) = ITT(3) + XX.FIX
-—--->LNGTH

CASE ELSE ! 4
ITN(4) = ITN(4) + 1: ITT(4) = ITT(4) + XX.FIX
~—-->LNGTH

END SELECT

DISTN(1) = DISTN(l) + 1: DISTL(1l) = DISTL(1l) + XX.DISTA
-—--->NCE

DISTL(5) = DISTL(5) + XX.DISTANCE * XX.DISTANCE 'S0SQ's
'PRINT XX.DISTANCE; XX.TGTTYPEN

IF XX.DISTANCE < DISTL(6) THEN DISTL(6) XX .DISTANCE

--==> 'MIN
IF XX.DISTANCE > DISTL(7) THEN DISTL(7) = XX.DISTANCE
----> 'MAX

S8ELECT CASE XX.DISTANCE

CASE I8 < .25

CASE

END SELECT

DISTN(2) = DISTN(2)

I8 < .5

DISTN(3) = DISTN(3)
CASE ELSE
DISTN(4) = DISTN(4)

ZONEN (1) = ZONEN(1l) + 1

S8ELECT CASE XX.ZONE

CASE

CASE

CASE

CASE

CASE

noqn
ZONEN (2)
" an
ZONEN (3)
n 3n
ZONEN (4)
" ogqn
ZONEN (5)
" gn
ZONEN (6)

CASE ELSE

END SBELECT

END SELECT

END SUB

ZONEN (7)

'

ZONEN(2)

ZONEN (3)

ZONEN (4)

ZONEN (5)

ZONEN (6)

ZONEN(7)

DEFINT I-N

DECLARE SUB BI2 (BIP%())

DECLARE SUB CRESBMRGFLE ()

DECLARE SUB FIN ()

DECLARE FUNCTION LOG$ (SB$, AS)

DECLARE SUB INIT (FILENAMES, FILENAME1lS$)
DECLARE SUB PUTXX (FILENOY%)

DECLARE SUB YESORNO (A$, BS)

CONST pi! = 3.14159

CONST nscanbuf = 400, nfixbuf = 500

CONST SF! = .472, XOFF! = -5.04, YOFF! = -.9, cpi! = 204.8, alpha
-===>! = -11.5 * pi! / 180, runoff! = -.34

TYPE FIXCOMB
TGTTYPEN AS INTEGER 'NON ZERO MEANS HIT
TGTTYPEC AS STRING * 4 'TARGET TYPE

c-10

FIXLNGTHE A8 INTEGER
PUPDIAM AS INTEGER

TGTID AS STRING * 3 'ID OF CLOSEST TARGET
DISTANCE AS SINGLE 'BETWEEN CLOSEST TARGET AND FIXATION
FRAMENO AS INTEGER '"TIME HISTORY FRAME #
TGTX AS SINGLE 'TARGET POSITION
TGTY AS SINGLE

FIXX AS SINGLE 'FIXATION POSITION
FIXY AS SINGLE

HEADING AS INTEGER 'DICE
COUNTDOWN AS INTEGER 'DICE
CONTFIX AS STRING * 1 'IS THIS

—~-~>A CONTINUATION OF THE PREVIOUS FIXATION
CROSSCHECK AS STRING * 1

ZONE AS STRING * 2 'WHAT AREA OF THE TUBE IS THE FIXATION?
SPEED AS STRING * 1 'SPLADT S-on, F-off
AIDON AS STRING * 1 'A-on, F-off
SPARE AS STRING * 8
TYPE

XX AS FIXCOMB
BI1P(1 TO 7) AS INTEGER'Buffered Input 1
BI2P(1 TO 7) AS INTEGER'Buffered Input 2
FILEDT3$, FILEMRGS
FILEDT3%, FILEMRG%
FIXPNTER(1 TO nfixbuf) AS INTEGER
FIXLENGTH(1 TO nfixbuf) AS INTEGER
INTRACK(1 TO nfixbuf) AS INTEGER
NUMINTRACK, NUMOUTTRACK AS INTEGER
PUPDIAM(1 TO nfixbuf) AS INTEGER
SHARED NUMFIX%, NUMSCANS, NOSTATS, NUMMRGS '**##*COMMON***##¥
SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
XLOOK(1 TO nfixbuf) AS INTEGER
YLOOK(1 TO nfixbuf) ~AS INTEGER

** FILE NUMBERS +* S

1 "~ #2 DT3 #3 INDEX
#a #s #6 MRG
#7 #8 #9

8B§ = " (MAIN "
DIM FILETOTS, FILELOGS
PRINT : PRINT
INPUT " Enter full file descriptor for index file ", INDEXS$
OPEN INDEX$ FOR INPUT AS #3
FILETOTS$ = "TOTAL.LOG": FILETOTS = 4
OPEN FILETOTS FOR APPEND AS FILETOT%
DO WHILE NOT EOF(3)
INPUT #3, FILENAMES$
FILENAME1S = RIGHTS (UCASES$ (FILENAMES) , 8)
CALL INIT(FILENAME$, FILENAMELS$)
CALL CRESMRGFLE
PRINT LOGS$ (SB$, " FINISHED CRESBMRGFLE")

CALL FIN 'Close FILES
LOOP
CLOSE 3, 4
L,
END ' MAIN PROGRAM 'DUMMYPAGES$?r?;PAGE;EXIT;
SUB BI2 (BIP%())
THENRRREREN
'PUFPOS®. o - - s v c v oo \Read the fixation data into circular buf

---->fers and\

! \compute a few preliminary statistics.
‘Parameters............. \BIP%() Circular buffer pointers
'Other input data....... \
'Input files............ \FILEDT3% =.DT3
'Output files........... \
'Other output data...... \BIP% (), XLOOK(),hYLOOK(), PUPDIAM() , FIXLEN

-===>GTH() , INTRACK() Circular buffers
' \SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK, NUMINTRACK, NUMOUTTRACK
'Function calls......... \

'Subroutine calls....... \
'‘Comments.ccc000000 \
R IXIITELY]

SHARED INTRACK() AS INTEGER

SHARED FIXLENGTH() AS INTEGER

SHARED XLOOK() A8 INTEGER

SHARED YLOOK() AS INTEGER

SHARED PUPDIAM() AS INTEGER

SHARED FIXPNTER() AS INTEGER

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER

SHARED FILEDT3%, FILEMRGS *f
'§IZE,FIRST,LAST, TRIG,NREC,NEOF, P1
NORIB = BIP%(3) - BIP%(2) 'If buffer low AND EOF=.F.

IF NORIB < 0 THEN NORIB = NORIB + BIP%(1)

IF NORIB < BIP&%(4) AND NOT EOF (FILEDT3%) THEN
FOR I = 1 TO BIP%(5) '‘Load buffer
GET FILEDT3%, , FIXPNTER(BIP%(3))

C-11

GET FILEDT3&, , XLOOK(BIP%(3)): GET FILEDT3%, , YLOOK(BIP% (3
————2>)) 'read record
IF NOT EOF(FILEDT3%) THEN
GET FILEDT3%, , PUPDIAM(BIP&(3)): GET FILEDT3%, , FIXLE
~--=-=>NGTH (BIP% (3))
SUMFIXLENGTH = SUMFIXLENGTH + FIXLENGTH (BIP%(3))
————> 'total of fixations
INTRACK(BIP%(3)) = 1
IF XLOOK(BIP%(3)) = O AND YLOOK(BIP%$(3)) = 0 AND PUPDIA
-=—==->M(BIP%(3)) < 11 THEN ' out of track
INTRACK(BIP% (3)) = 0O
SUMOUTTRACK = SUMOUTTRACK + FIXLENGTH(BIP%(3)) 'tot
---=->al out of track
NUMOUTTRACK = NUMOUTTRACK + 1

ELSE ' in track
SUMINTRACK = SUMINTRACK + FIXLENGTH(BIP%(3))
————D 'total intrack
NUMINTRACK = NUMINTRACK + 1
END IF

BIPS(3) = BIP%(3) + 1
IF BIPS(3) > BIP%(1) THEN BIP&%(3) =1
ELSE
EXIT FOR
END IF
NEXT I
END IF
BIP%(2) = BIP%(2) + 1: IF BIP%(2) > BIP%(l) THEN BIP%(2) = 1'Incr
---->ement first

SUB CRESMRGFLE
THENRRRANN Y
'Purpose. \ Initial creation of the .MRG file using

----> data from
! \ .DAT and time history pointer array from subroutine
' \ FIXPOINTER
'Parameters. \ none
'Other input data....... \ NUMMRG%, PUPDIAM, FIXPNTER, XLOOK, CPI!
-~=-->, YLOOK

Cheee s et i e e s e \ FIXLENGTH,

‘Input files............ \ FILEDT3$= .DAT

'Output files........... \ FILEMRG$= .MRG

'Other output data......\ none

'Function calls.........\ LOG$

'Subroutine calls.......\ BI2, PUTXX A

‘Comments............ ...\ Target type is set to 0, "UNK" for in-t
---->racks or

' \ 80, "OUT" for out-tracks. Other fields are initialized

' \ to unrealistic constants.

THERNRRRRAY

C-12

SHARED BI2P() AS INTEGER 'BufferedInput 2
SHARED FILEDT3$, FILEMRGS

SHARED FILEDT3%, FILEMRGS

SHARED FIXLENGTH () AS INTEGER

SHARED FIXPNTER() AS INTEGER

SHARED XLOOK() AS INTEGER

SHARED YLOOK() AS INTEGER

SHARED PUPDIAM() AS INTEGER

SHARED XX AS FIXCOMB

SBS = "(CREBMRGFLE "

CLOSE FILEMRGS

OPEN FILEMRG$ FOR APPEND AS #FILEMRGS ' FIXATION, TIME HISTORY ME

—-~==>RGE
NUMMRG& = LOF (FILEMRGS) 'can the file be found
IF NUMMRG& <> O THEN
PRINT

PRINT LOG$ (SB§, FILEMRGS$ + " is not empty and you are trying
--=-=-> to OPEN it for output")

PRINTLOGS (SBS, "NUMFIX% = ") ; NUMFIX%; "NUMMRG& = "; NUMMRG&

A$ = "Do you want to SKIP " + FILEMRGS + " and exit CRESMRGF

=--->LE subroutine"

A§ = A$ + " If (no) then old data is purged"”

CALL YESORNO(AS$, BS$)

IF B$ = "y" THEN

CLOSE FILEMRGSY%: EXIT SUB

ELSE
CLOSE FILEMRGS%: OPEN FILEMRG$ FOR OUTPUT AS #FILEMRGS
END IF
END IF

L I N B R R I A T N Y L L I . T T T T

XX.TGTTYPEN = 0O: XX. TGTTYPEC = "UNK": XX.FIXLNGTH = 0: XX.PUPDIAM
~===>% = 0: XX.TGTID = "Jil"

XX.DISTANCE = 99.99: XX.FRAMENO = 9999: XX.TGTX = 0: XX.TGTY = O:
—===> XX.FIXX = 0: XX.FIXY = O
XX.HEADING = 999: XX.COUNTDOWN = 0: XX.CONTFIX = "Z": XX.CROSSCHE
====>CK = "Z": XX.ZONE = "9g9n"

XX.SPEED = "F": XX.AIDON = "F": XX.SPARE = " "

SEEK #FILEDT3%, 1 'REWIND FILE & RESET BUFFER '

I = nfixbuf: BI2P(l) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) = .2
—===>% I

]
[

BI2P(5) = .7 % I: BI2P(6) = O: BI2P(7)
FOR I = 1 TO NUMFIX%
CALL BI2(BI2P())
II = BI2P(2)
XX.PUPDIAM = PUPDIAM(II): XX.FRAMENO = FIXPNTER(II): XX.FIXX
---=-> = XLOOK(II) / cpi!
XX.FIXY = YLOOK(II) / cpi!: XX.FIXLNGTH = FIXLENGTH(II)
IF XILOOK(II) = O AND YLOOK(II) = O AND PUPDIAM(II) < 11 THEN
-——D> ' out of track
XX.TGTTYPEN = 89: XX.TGTTYPEC = "QUT"
IF FIXLENGTH(II) < 13 THEN XX.TGTTYPEN = 80: XX.TGTTYPE

C-13

———=>C = "BLNK"
END IF
CALL PUTXX (FILEMRGS)
XX.TGTTYPEN = 0: XX.TGTTYPEC = "UNK"
NEXT 1
CLOSE FILEMRGH

END 8SUB 'CRESMRGFLE 'DUMMYPAGES$?2r?; PAGE ;EXIT;

SUB FIN

THENRRRRENN

'PUrpoS®.....:..s.......\ Close all files, scale and output a few

~---> statistics

'‘Parameters............. \

'Other input data....... \ SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK,
=~ =5>NUMINTRACK, NUMOUTTRACK

‘Input files............ \

'Output files........... \

Other output data...... \

'Function calls.........\ LOG$

'Subroutine calls.......\

'‘Comments.ccc000.- \

THEEREARRN

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
SHARED FILETOTS, FILELOGS
SR = "(FIN "
IF NUMINTRACK <> 0 AND NUMOUTTRACK <> 0 THEN
PRINT #FILELOGS, LOGS$ (SB$, "NUMBER OF IN TRACK FIXATIONS= ")
——==>: NUMINTRACK ' totals for .txt file
PRINT #FILELOG%, LOGS$ (SB$, "NUMBER OF OUT TRACK FIXATIONS=")
-=~==>; NUMOUTTRACK
PRINT #FILELOGS, USING "& ###### OR ####_## SECONDS"; LOGS (S
---->B$, "TOTAL TIME IN TRACK IS "); SUMINTRACK; SUMINTRACK / 30
PRINT #FILELOG®, USING "& ###### OR ####. ## SECONDS"; LOGS (S
---=>B§, "TOTAL TIME OUT TRACK IS "); SUMOUTTRACK; SUMOUTTRACK /
---=->30
PRINT #FILELOGS, USING "& ###### OR #### ## SECONDS"; LOGS (S
---->B$, "TOTAL FIXATION TIME IS "); SUMFIXLENGTH; SUMFIXLENGTH

---->/ 30
PRINT #FILELOGSY, USING "& ###.## OR ##.## SECONDS"; LOGS (SB$
——-->, "AVERAGE IN TRACK FIXATION IS "); SUMINTRACK / NUMINTRAC

---=>K; SUMINTRACK / NUMINTRACK / 30
PRINT #FILELOGY, USING "& ###.## OR ##.## SECONDS"; LOGS$ (8BS
--=->, "AVERAGE OUT TRACK FIXATION IS "); SUMOUTTRACK / NUMOUTTR
—=-==>ACK; SUMOUTTRACK / NUMOUTTRACK / 30

[}
PRINT #FILETOTS, LOG$(SB$, "NUMBER OF IN TRACK FIXATIONS= ")
-—==>; NUMINTRACK ' totals for .txt file
PRINT #FILETOTS, LOG$(SB$, "NUMBER OF OUT TRACK FIXATIONS=")

C-14

/ ---->; NUMOUTTRACK
PRINT #FILETOTS, USING '"& ###### OR ###4. ## SECONDS"; LOG$ (S
~=~=>B$, "TOTAL TIME IN TRACK IS "); SUMINTRACK; SUMINTRACK / 30
PRINT #FILETOTS, USING "& ###### OR ####. ## SECONDS"; LOG§ (S
~~-==>B§, "TOTAL TIME OUT TRACK IS8 "); SUMOUTTRACK; SUMOUTTRACK /
-=-==>30
PRINT #FILETOTS, USING "& ###### OR #### ## SECONDS"; LOG§ (S
~~==->B§, "TOTAL FIXATION TIME IS "); SUMFIXLENGTH; SUMFIXLENGTH
-=-==>/ 30
PRINT #FILETOTS, USING "& ###.## OR ##.## SECONDS"; LOGS (SB$
~=-==>, "AVERAGE IN TRACK FIXATION IS "); SUMINTRACK / NUMINTRAC
~-=-=>K; SUMINTRACK / NUMINTRACK / 30
PRINT #FILETOTS, USING "& ###.## OR ##.## SECONDS"; LOGS$ (SB$
w===>, "AVERAGE OUT TRACK FIXATION IS "); SUMOUTTRACK / NUMOUTTR
--==>ACK; SUMOUTTRACK / NUMOUTTRACK / 30
END IF
CLOSE 2, 5, 6

--

IND SUB ' FIN 'DUMMYPAGES$?r?;PAGE ;EXIT;

SUB INIT (FILENAMES, FILENAME1$)

HERNRRRR Y

CPUTPOB®. ... \Initialize parameters on circular buffer

: \ Initialize sums to zero. Let user choose partic-

! \ ular run for analysis. Determine aid type for
\ subsequent branching. Open FILEDT3§,
\ and store their lengths.

‘yYarameters............. \ none

Dther input data....... \

‘Input files............ \ FILEDT3§,

utput files........... \

‘“ther output data...... \ File names & unit #'s. Initialized vari

---->ables, sums

\ and pointers

‘function calls......... \ LOG$

‘3ubroutine calls....... \ none

‘Comments...........c...0 \

TR RNNNREY

SHARED BI2P() AS INTEGER 'BufferedInput 2

SHAREC FILEDT3$, FILEMRGS
S8HARED FILEDT3%, FILEMRGS
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
3JARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED FILETOTS, FILELOGY
4B$ = " (INIT "
'8IZE, FIRST, LAST, TRIG,NREC, NEOF, P1
I = nfixbuf: BI2P(1) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) =>;21
BizZP'5) = ,7 * I: BI2P(6) = O: BI2P(7) = 1
NUMPIX® = 0: NUMSCANS = O
SUMFIXLENGTH = 0: SUMINTRACK = O: SUMOUTTRACK = 0

C-15

NUMINTRACK = 0: NUMOUTTRACK = 0
IF FILENAMES = “v THEN PRINT : PRINT : PRINT : STOP
FILEDT3S = FILENAMES + ".DT3": FILEDT3% = 2 ‘append extension
FILEMRGS = FILENAMES + " .MRG": FILEMRGY = 6
FILELOGS = FILENAMES + " . LOG": FILELOGY = 5
' COMMENT: FILE NAME SHOULD ILOOK LIKE
' "C:\FASAFILE\CRONE\CC10SLCE"
OPEN FILEDT3$ FOR BINARY AS #2 'oculometer .dat file
NUMFIXS = LOF(2) / 10 'can the file be found
IF NUMFIX% = O THEN
STOP
ELSE
PRINT LOGS$ (SB§, "NUMBER OF FIXATIONS IS ") ; NUMFIXS%
END IF
OPEN FILELOGS FOR APPEND AS FILELOGH
IF LOF(FILELOG%) = 0 THEN PRINT "Log file is empty ":; FILENAMES :
—-——=2>8TOP
PRINT *FILEI‘OG" N2 2 R R R R XX XX XXX XX AR XX 2 222 2 2]
————)*Qtttititt********tt*i*"

PRINT #FILELOGA, LOG$(SB$, " Making Merge file from .DT3 after fi
~-==>ltering is complete")

PRINT #FILELOGS, LOGS$ (SB$, FILENAMES + " NUMBER OF FIXATIONS IS
-===> "); NUMFIX%

PRINT #FILETOTS, "Wt dad v e Ak ke h h ke kRN E RN R AR AR AN ORI RS
R Y 2 2 L L AR AR R IR 2 2

PRINT #FILETOTS, LOGS(SB$, " Making Merge file from .DT3 after fi
-—-=-=>1ltering is complete")

PRINT #FILETOTS, LOG$(SB$, FILENAMES + " NUMBER OF FIXATIONS IS
--==> ") ; NUMFIX%

--

--

END SUB ' INIT 'DUMMYPAGES$?r?;PAGE; EXIT;

SUB PUTXX (FILENO%)

THRRERERERS

'PUZPOS®. e v v v naans \ Writes a record from XX to the appropri
---->ate file.

'Parameters............. \ FILENO%

‘Other input data....... \ XX

'Input files............ \ none

‘Output files........... \ FILEMRGS$

'Other output data...... \ none

‘Function calls......... \ none

'Subroutine calls....... \ none

TCoOmMMents. .. .cconnseenn \ This makes it easier to modify record f

—-==—=20rm.
CRERERRNRN

'Write the array XX to a record on the FILEMRGS file.

SHARED XX AS FIXCOMB
WRITE #FILENOS, XX.TGTTYPEN, XX.TGTTYPEC, XX.FIXLNGTH, XX.PUPDIAM

C-18

-=-==>, XX.TGTID, XX.DISTANCE, XX.FRAMENO, XX.TGTX, XX.TGTY, XX.FI
-===>XX, XX.FIXY, XX.HEADING, XX.COUNTDOWN, XX.CONTFIX, XX.C
---->ROSSCHECK, XX.ZONE, XX.SPEED, XX.AIDON, XX.SPARE

C-17

DECLARE S8UB FIN ()
DECLARE FUNCTION LOGS (SB§, AS$)

DEFINT I-N

THNRNRERREY

'PUYPOB@. . . . e vt vt v ennnn \ Creates FILEIDX$ which contains pointer
---->s8 at the

' \ first byte of each time history record on FILEACP$

'Parameters............. \

'Other input data....... \ File names and unit numbers

'Input files............ \ FILEACP$

‘Output files........... \ FILEIDX$

'‘Other output data..... A\

‘Function calls......... \ LOG$

'Subroutine calls....... \

‘Comments............... \ Assumes .ACP is open and pointer is at
—--=-=->the first

' \ byte of the time history i.e. beyond the file title.

THERERRNREY

DIM IDX (1 TO 2000) AS LONG

INPUT " Enter full file descriptor for index file ", INDEX$

OPEN INDEX$ FOR INPUT AS #1
DO WHILE NOT EOF (1)

Cc-18

INPUT #1, FILENAMES
FILENAME1S$ = RIGHTS (UCASES$ (FILENAMES) , 8)
"INPUT " ENTER OCULOMETER FILE NAME, NO EXTENSION ", FILEN
--—->AMES$
'FILENAMES = COMMANDS$
IF FILENAMES = "" THEN PRINT : PRINT : PRINT : STOP
SB$ = " (CRISIDX "
FILEACPS = FILENAMES$ + " .ACP": FILEACP% = 3'append extension
FILEIDXS = FILENAMES + ".IDX": FILEIDX% = 4
OPEN FILEACPS FOR INPUT AS FILEACP%
NOBACP& = LOF (FILEACPS%) ‘can the file be found
IF NOBACP& = 0 THEN
PRINT LOGS$ (SB$, FILEACPS$); "FILE NOT FOUND"
~-===> ' fix this test
CALL FIN
ELSE : PRINT LOGS$ (SB$, "NUMBER OF ACP BYTES IS ") ; NOBACP&
END IF
INPUT #FILEACP%, FILEHDRS
INPUT #FILEACP%, FILEHDRS$
PRINT LOGS$ (SB$, FILEHDRS)

CLOSE FILEIDXS
OPEN FILEIDX$ FOR APPEND AS #FILEIDX%
IF LOF(FILEIDX%) = 0 THEN
IDX(1) = SEEK(FILEACP%)
---=> 'assumes INIT set the pointer at the 1'st record
PRINT #FILEIDX%, USING "########"; IDX(1) 'write
---->byte position of 1'st record
I =]

DO WHILE NOT EOF (FILEACPY%)

I=1714+1
INPUT #FILEACP%, NOACS, T%
IF EOF(FILEACPS) THEN PRINT LOG$ (SB§, " A*+**EOF(FI

—=—->LEACPSR) *#®#%") ; T; J: EXIT DO
FOR J = 1 TO NOACH%
LINE INPUT #FILEACP%, A$ 'INPUT AIRCRAFT
IF EOF (FILEACPS%) THEN PRINT LOG$ (SB$, " BW++E
--~=>0F (FILEACPS®) **#*") ; T; J: EXIT FOR
NEXT J
IF EOF(FILEACP%) THEN PRINT LOG$ (SB$, " C**+EOF(FI
-=-==-DLEACPS%) *#*#*") . 1. J: EXIT DO
INPUT #FILEACP%, NOTURNS%, NOSLOTS%, NODICES
IF EOF (FILEACP%) THEN PRINT LOGS$ (SB$, " DW**+*EOF (FI
-——=>LEACPS) *#*#") : T, J: EXIT DO
NOSYM% = NOTURNS% + NOSLOTSS + NODICE%
IF NOSYM% <> 0O THEN
FOR J = 1 TO NOSYM%
K = J + NOACS
LINE INPUT #FILEACPS%, A$ 'INPUT SYMBOLS
IF EOF(FILEACP%) THEN PRINT LOGS$ (SB$, "
~=—=>E***EOF (FILEACPS%) *#**") ; TI; J: EXIT FOR

NEXT J
END IF
IF EOF (FILEACPS%) THEN PRINT LOG$ (SB$, " F**+EOF(FI
——=-->LEACP%) *#*#*v) - T. J: EXIT DO
IDX(I) = SEEK(FILEACP%) ‘write byt

---->e position of i'th record
PRINT #FILEIDX%, USING "#######4"; IDX(I)

LOOP
PRINT LOG$ (SB$, "; COMPLETED GENERATION OF TIME HISTORY
----> INDEX FILE "); I; " RECORDS "; "
ELSE
PRINT LOG$ (8B$, " ERROR-TIME HISTORY INDEX FILE ALREADY
----> EXISTS. FILE NOT GENERATED")
CALL FIN
END IF
CLOSE FILEIDXS%, FILEACP%
LOOP
1
e e
END ' MAIN PROGRAM
SUB FIN
THENRERENRY
'Purpose........... +....\ Close all files, scale and ocutput a few
-—--> statistics
'Parameters............. \
'Other input data..... e\
'Input files............ \
'Output files........... \
'Other output data...... \

c-19

'Punction calls......... \ LoGS

'Subroutine calls....... \
‘Comments.co0000.. \
XTIt I1211

8B§ = " (FIN "
CLOSE 1, 2, 3, 4, 5, 6, 7, 9

--

END SUB ' FIN 'DUMMYPAGES$?r?; PAGE; EXIT;

Cc-20

PROGRAM CRISMGX

DEFINT I-N
DECLARE FUNCTION LOG§ (SB§, AS)
! ** FILE NUMBERS **

! #1 #2 #3 FLEINDX1
! #4 #5 #6 MRG
! #7 MGX #8 #9

XXXS = "8 N\ #BNE SRS\ O\ HR_ S0 BRNE BRE_ BB HER RS NRE N R
=== HE HENE HEEE 1 1 \\n
SB§ = " CRISBMGX ("
INPUT " Enter full file descriptor for index file ", INDEXS$
OPEN INDEX$ FOR INPUT AS #3
DO WHILE NOT EOF(3)
INPUT #3, FILENAMES$
FILENAME1$ = RIGHTS$ (UCASE$ (FILENAMES) , 8)
FILEMRGS = FILENAMES + " .MRG": FILEMRGY% = 6
OPEN FILEMRG$ FOR INPUT AS #FILEMRGS% ' MERGE FILE
NUMFIX& = LOF(FILEMRGH) 'can the file be found
IF NUMFIX& = 0O THEN
PRINT LOGS (SB$, FILEMRGS$); "FILE NOT FOUND"
----> ' fix this test
EXIT DO
ELSE : PRINT LOGS (SB$, "NUMBER OF BYTES ON .MRG FILE IS ");
-—---> NUMFIX&
END IF
FILEMGXS = FILENAMES$ + " _.MGX": FILEMGX% = 7
OPEN FILEMGX$ FOR APPEND AS #FILEMGX%
IF LOF(FILEMGX%) <> O THEN
PRINT "Index file already exists", FILENAMES$
EXIT DO
ELSE
CLOSE FILEMGX%
OPEN FILEMGXS FOR RANDOM AS FILEMGX% LEN = 4
END IF
DO WHILE NOT EOF (FILEMRGY)
N& = SEEK(FILEMRGH)
PUT #FILEMGX%, , N&
LINE INPUT #FILEMRGS, AS$
LOOP
NOR = LOF(FILEMGX%) / 4
CLOSE #FILEMRG%, FILEMGX%
PRINT LOGS (SB$, FILENAME1S$ + " Number of records ="); NOR
LOOP
CLOSE 3

..

END ' MAIN PROGRAM 'DUMMYPAGES ?r?; PAGE ;EXIT;

C-21

DEFINT I-N

DECLARE SUB PRINTSEQ (LAPOVERY)

DECLARE SUB FINDAB (IOK%)

DECLARE SUB FILLBUF ()

DECLARE SUB FIN ()

DECLARE SUB INIT (FILENAME$, FILENAME1S$)

DECLARE FUNCTION LOG$ (SB§, AS$)

DECLARE SUB GETXXB (FILENOS, NEOFMRG%)

TYPE FIXCOMB
TGTTYPEN A8 INTEGER 'NON ZERO MEANS HIT
TGTTYPEC AS STRING * 4 'TARGET TYPE
FIXLNGTH AS INTEGER
PUPDIAM A8 INTEGER

TGTID AS STRING * 3 'ID OF CLOSEST TARGET
DISTANCE A8 SINGLE 'BETWEEN CLOSEST TARGET AND FIXATION
FRAMENO A8 INTEGER "TIME HISTORY FRAME #
TGTX AS SINGLE ' TARGET POSITION
TGTY AS SINGLE

FIXX AS SINGLE '"FIXATION POSITION
FIXY AS SINGLE

HEADING AS STRING * 3 'DICE
COUNTDOWN AS INTEGER 'DICE
CONTFIX AS STRING * 1 'IS THIS

———=>A CONTINUATION OF THE PREVIOUS FIXATION
CROSSCHECK AS STRING * 1

ZONE AS STRING * 2 'WHAT AREA OF THE TUBE 1S THE FIXATION?
SPEED AS STRING * 1 'SPLADT S-on, F-off
AIDON AS STRING * 1 ‘A-on, F-off
SPARE AS STRING * 8

END TYPE

DIM AARAS

DIM DTEMP1 AS FIXCOMB

DIM NBUFPARM(4), ITRIG

' SIZE, FIRST, LAST, EOF

DIM FLAGFUL AS INTEGER, NXRECNO AS INTEGER

ITRIG = 5: NBUFPARM(1) = 100

DIM FIXBUF (NBUFPARM(1) + 1) AS FIXCOMB

DIM ASTORE AS FIXCOMB, ARECNO AS INTEGER, ENDRECNO AS INTEGER, BS
~——->TORE AS FIXCOMB, ENDSTORE AS FIXCOMB

DIM LSEQ, LASTREC, ISEQORD

DIM APSTORE AS FIXCOMB, BPSTORE AS FIXCOMB, APRECNO, ENDPRECNO, L

---->PSEQ, ISEQTP, ITLAP, ITLAPP

DIM IAT, IET, ISEQT, NONSEQT, TOTSEQT, TOTLPV, TOTNSEQT '*TIME

DIM IAID AS INTEGER

DIM FILEMRGS

DIM FILEMRGS

'DIM NUMINTRACK, NUMOUTTRACK AS INTEGER

'DIM SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG

' **+ FILE NUMBERS **

! #1 FILE INDEX #2 MRG #3 CROSS.PRT (PROUT)
' #4 #5 LOG #6
! #7 ccs #8 #9

c-22

SPSINV! = 1 / 30: 8B$ = " (CROSS1 "
'NOSTATS = 10
AAAAS = " MAIN-START MAIN LOOP"

HEADINGS = * SEQ# STRT-FNSH TOG TYPE TYPE TGTID TIM
-=-==>E ZONE AID SPD LPOV DSTAB"
INPUT " Enter full file descriptor for Index file ", INDEXS$

OPEN INDEX$ FOR INPUT AS #1
DO WHILE NOT EOF(1l)
INPUT #1, FILENAMES
FILENAME1$ = RIGHTS$ (UCASES$ (FILENAMES), 8)
CALL INIT(FILENAMES, FILENAME1S$)
OPEN FILENAMES + ".,CCS" FOR OUTPUT AS #7
'PRINT #7, HEADINGS
LENDRECNO = 0: ISEQORD = 0: TOTSEQT = 0: TOTLPV = 0: TOTNSEQ

——=->T = 0
SUM = 0

PRINT LOG$ (SBS, " Start"): PRINT #5, LOGS$ (SB$, " Start")

DO

CALL FINDAB (IOK)

TOTSEQT = TOTSEQT + ISEQT

TOTNSEQT = TOTNSEQT + NONSEQT

LAPOVER = O: IF ARECNO = LENDRECNO AND IOK = 1 THEN LAPOVER

————D2= 1

IF LAPOVER = 1 THEN SUM = SUM + ASTORE.FIXLNGTH

IF IOK = 1 THEN CALL PRINTSEQ (LAPOVER)

LENDRECNO = ENDRECNO

IF LASTREC = 1 THEN EXIT DO

LOOP

CALL PRINTSEQ(O) 'FLUSH BUFFER

PRINT " # of MRG records processed", NXRECNO

PRINT #5, " # of MRG records processed", NXRECNO

PRINT " # OF resulting sequences", ISEQORD

PRINT #5, " # OF resulting sequences", ISEQORD

PRINT " Total sequence time", TOTSEQT

PRINT #5, " Total sequence time", TOTSEQT

PRINT " Minus Lap over time", -SUM

PRINT #5, " Minus Lap over time", -SUM

PRINT " Plus time not in sequence", TOTNSEQT

PRINT #5, " Plus time not in sequence", TOTNSEQT

PRINT " Equals total time", TOTSEQT - SUM + TOTNSEQT

PRINT #5, " Equals total time", TOTSEQT - SUM + TOTNSEQT

PRINT LOG$ (SB$, " FINISHED SEARCH"): PRINT #5, LOGS(SB§, " F
——==>INISHED SEARCH")

CLOSE 2, 3, 5, 7

'CALL FIN 'Close FILES

--

C-23

SUB FILLBUF

TRERERINRNY

'PUYPOB®.ot e v n e \ Fill the Merge file buffer and set fina
-=--=->1 record

! peointer

'Parameters............. \

'Other input data....... \ filemrg%, size, first, last in "NBUFPAR

———=>M()"

‘Input files............ \ FILEMRGS$

toutput files........... \

'Other output data...... \ last, final in "NBUFPARM()"

'Function calls......... \

'Subroutine calls....... \ GETXXB

'Comments............... \

TRIRNRNENEY

SHARED NBUFPARM(), ITRIG
' SIZE, FIRST, LAST, EOF
SHARED FIXBUF() AS FIXCOMB
SHARED DTEMP1 AS FIXCOMB
SHARED FILEMRGS$
SHARED FILEMRGS%
IF NBUFPARM(3) >= NBUFPARM(2) THEN
NIB = (NBUFPARM(3) - NBUFPARM(2) + 1) MOD (NBUFPARM(1) + 1)
ELSE
NIB = (NBUFPARM(1l) - NBUFPARM(2) + 2 + NBUFPARM(3)) MOD (NBU
--==>FPARM(1) + 1)
END IF
IF (NIB < (.8 * NBUFPARM(1))) AND NBUFPARM(4) = O THEN 'NOT EOF A
---->ND NOT FULL
NEOFMRG = 0
ITEMP = NBUFPARM (3)
FOR I = 1 TO NBUFPARM(1) - NIB
L = ((ITEMP + I - 1) MOD (NBUFPARM(1l) + 1)) + 1
CALL GETXXB(FILEMRGY, NEOFMRG)
FIXBUF (L) = DTEMP1
NBUFPARM(3) = L
IF NEOFMRG = 1 THEN NBUFPARM(4) = L: EXIT FOR

NEXT I
END IF
1]
PP
END SUB ' FILLBUF'
SUB FIN
THRAEREREES
'PUYPOS®. . . -+ v s v v oo onsnn \ Close all files, scale and output a few
-~--=-> statistics
‘Parameters............. \
tOther input data....... \ SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK,
-——=>NUMINTRACK, NUMOUTTRACK
'Input files............ \
'Output files........... \

C-24

'Other output data......\

'Function calls......... \ LOGS$
'Subroutine calls....... \
'Comments...............\
TRRNRNNENN

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
IF NUMINTRACK <> O AND NUMOUTTRACK <> 0 THEN
PRINT LOGS$ (SB$, "NUMBER OF IN TRACK FIXATIONS= "); NUMINTRAC

-——==>K; ' totals for .txt file
PRINT LOGS(SBS, "NUMBER OF OUT TRACK FIXATIONS="),; NUMOUTTRA
---->CK

PRINT USING "& ###### OR ####_ ## SECONDS"; LOGS$ (SB$, "TOTAL
-=—=>TIME IN TRACK IS "); SUMINTRACK; SUMINTRACK / 30
PRINT USING "& ###### OR ####.## SECONDS"; LOGS (SB$, "TOTAL
—=-==>TIME OUT TRACK IS "); SUMOUTTRACK; SUMOUTTRACK / 30
PRINT USING "& ###### OR ####_ ## SECONDS"; LOGS (SB$, "TOTAL
-~==>FIXATION TIME IS "); SUMFIXLENGTH; SUMFIXLENGTH / 30
TT1 = SUMINTRACK / NUMINTRACK / 30
PRINT USING "& ###.4# OR ##.## SECONDS"; LOGS (SB$, "AVERAGE
~-==->IN TRACK FIXATION IS ") ; SUMINTRACK / NUMINTRACK; TT1
TT1 = SUMOUTTRACK / NUMOUTTRACK / 30
PRINT USING "& ###.## OR ##.#% SECONDS"; LOGS$ (SBS$, "AVERAGE
-===>0UT TRACK FIXATION IS "); SUMOUTTRACK / NUMOUTTRACK; TT1
END IF
CLOSE 2, 3, 4, 5, 6, 7

--

SUB FINDAB (I0K)

SHARED ASTORE AS FIXCOMB, ARECNO AS INTEGER, ENDRECNO AS INTEGER,
-—--> BSTORE AS FIXCOMB, ENDSTORE AS FIXCOMB

SHARED LSEQ, LASTREC, ISEQORD

SHARED NBUFPARM() , ITRIG

SHARED IAT, IET, ISEQT, NONSEQT, TOTSEQT, TOTLPV, TOTNSEQT '*#*#

——==>%TIME

' SIZE, FIRST, LAST, EOF

SHARED FIXBUF() AS FIXCOMB

SHARED FLAGFUL AS INTEGER, NXRECNO AS INTEGER

IAT = O: IET = 0: ISEQT = O: NONSEQT = O: LTEBT = O: LTEET = 0 '¥*

———=D>t R TIME
IOK = 0: LSEQ = 0O: ARECNO = O: ENDRECNO = O: IHITA = O: LASTREC =
-——=>0
DO ' FIND A
IF FLAGFUL <> 1 THEN CALL FILLBUF: FLAGFUL = 1
J =0

FOR I = NBUFPARM(2) TO NBUFPARM(2) + NBUFPARM(1l) - 1

L= ((I - 1) MOD (NBUFPARM(1l) + 1)) + 1

J= J + 1

ITEST = FIXBUF(L).TGTTYPEN <> O AND FIXBUF (L) .TGTTYPEN <> 80
----> AND FIXBUF (L) .TGTTYPEN <> 89

C-26

NONSEQT = NONSEQT + FIXBUF(L) .FIXLNGTH ‘¥ k4 TIME
IF ITEST THEN IHITA = 1: IAT = FIXBUF(L) .FIXLNGTH: NONSEQT =

-~--> NONSEQT - IAT 1% # % +TIME
IF L = NBUFPARM(4) THEN LASTREC = 1
IF IHITA = 1 OR LASTREC = 1 THEN EXIT FOR ' Found

—-=~->A OR LAST REC
IF L = NBUFPARM(3) THEN EXIT FOR

NEXT I
NXRECNO = NXRECNO + J ' A not found, Load another buffer
NBUFPARM(2) = (L. MOD (NBUFPARM(1) + 1)) + 1: FLAGFUL = 0
IF IHITA = 1 OR LASTREC = 1 THEN EXIT DO ' Found A
~---> OR LAST REC
LooP
IF LASTREC = 1 THEN '**¥**TIME ' HIT LAST RECORD BEFORE A
IF IHITA = 1 THEN NONSEQT = NONSEQT + IAT
EXIT SUB
END IF

ARECNO = NXRECNO - 1: ASTORE = FIXBUF(L)

IHITB = O

IBREAK = O

DO ' FIND B
IF FLAGFUL <> 1 THEN CALL FILLBUF: FLAGFUL = 1
J=20

FOR I = NBUFPARM(2) TO NBUFPARM(2) + NBUFPARM(1l) - 1
L= ((I - 1) MOD (NBUFPARM(1l) + 1)) + 1
J=J+ 1
LTEBT = LTEBT + FIXBUF (L) .FIXLNGTH t * % &+ TIME
IF L = NBUFPARM(4) THEN LASTREC = 1
ITEST3 = FIXBUF(L).TGTTYPEN = 89 OR (FIXBUF(L).TGTTYPEN = O
—---->AND FIXBUF (L) .FIXLNGTH > 12)
IF ITEST3 THEN IBREAK = 1
'no sequence, Start again with A
ITEST1 = FIXBUF(L) . TGTTYPEN = 80 OR (FIXBUF(L).TGTTYPEN = 0
=---->AND FIXBUF (L) .FIXLNGTH < 13)
‘blink or unk < 13
ITEST2 = FIXBUF(L) .TGTTYPEN = ASTORE.TGTTYPEN AND FIXBUF(L).
-===>TGTID = ASTORE.TGTID
‘Back to A :
IF NOT ITEST1 AND NOT ITESTZ2 AND NOT ITEST3 THEN IHITB = 1
-——=> ' Found B
IF IHITB = 1 OR LASTREC = 1 OR IBREAK = 1 THEN EXIT FOR
IF L = NBUFPARM(3) THEN EXIT FOR
NEXT I
NXRECNO = NXRECNO + J ' B not found, Load another buffer.
NBUFPARM(2) = (L MOD (NBUFPARM(l) + 1)) + 1: IF J > ITRIG TH
---~->EN FLAGFUL = 0
IF ITEST3 OR IHITB = 1 OR LASTREC = 1 THEN EXIT DO
LOOP
' END FIND B
IF IHITB = 1 THEN
NXRECNO = NXRECNO - 1

C-26

NBUFPARM(2) = 1 + (NBUFPARM(2) + NBUFPARM(1l) - 1) MOD (NBUFP
--==->ARM(1l) + 1)

ENDRECNO = NXRECNO: BSTORE = FIXBUF (L)

IOK = 1: LSEQ = 1

ENDSTORE = BSTORE

ISEQT = IAT + LTEBT t &%k *TTIME
ELSE

NONSEQT = NONSEQT + LTEBT + IAT ' ®# &k *TIME

'IF LASTREC <> 1 THEN NONSEQT = NONSEQT - FIXBUF (L) .FIXLNGTH
END IF

IF LASTREC = 1 OR IBREAK = 1 THEN EXIT SUB

LOOP

IF FLAGFUL <> 1 THEN CALL FILLBUF: FLAGFUL = 1
J =0
FOR I = NBUFPARM(2) + 1 TO NBUFPARM(2) + NBUFPARM(l) - 1
L= ((I - 1) MOD (NBUFPARM(1) + 1)) + 1
J=J+ 1
IF L = NBUFPARM(4) THEN LASTREC = 1
LTEET = LTEET + FIXBUF (L) .FIXLNGTH
ITEST1 = FIXBUF(L) .TGTTYPEN = 80 OR (FIXBUF(L) .TGTTYPEN = 0
—---=->AND FIXBUF (L) .FIXLNGTH < 13)
ITEST2 = FIXBUF (L) .TGTTYPEN = ASTORE.TGTTYPEN AND FIXBUF (L) .
-—-==>TGTID = ASTORE.TGTID
ITEST3 = FIXBUF (L) .TGTTYPEN = 89 OR (FIXBUF(L) .TGTTYPEN = 0
—-—==>AND FIXBUF(L) .FIXLNGTH > 12)
ITEST4 = FIXBUF (L) .TGTTYPEN = BSTORE.TGTTYPEN AND FIXBUF(L).
-=--=>TGTID = BSTORE.TGTID
IF LASTREC <> 1 AND NOT (ITEST2 OR ITEST3 OR ITEST4) THEN
IF NOT ITEST1 THEN ' Third target.
EXIT SUB
END IF
ELSE
EXIT FOR 'EOF or HIT or BREAK
END IF
IF L = NBUFPARM(3) THEN EXIT FOR 'buffer empty
NEXT I
NXRECNO = NXRECNO + J
NBUFPARM(2) = L: IF J > ITRIG THEN FLAGFUL = 0
IF (ITEST2 OR ITEST4) THEN ' A or B
ITESTS = FIXBUF (L) .TGTTYPEN = ENDSTORE.TGTTYPEN AND FIXBUF (L
---->) .TGTID = ENDSTORE.TGTID
IF NOT ITEST5 THEN LSEQ = LSEQ + 1: ENDSTORE = FIXBUF (L)

ISEQT = ISEQT + LTEET: LTEET = O '*&***TIME
IF LASTREC = 1 THEN EXIT SUB

ELSE

NONSEQT = NONSEQT + LTEET ' ****TIME

NXRECNO = NXRECNO + 1 'advance poinnters

NBUFPARM(2) = 1 + NBUFPARM(2) MOD (NBUFPARM(1l) + 1)
EXIT SUB

END IF

ENDRECNO = ENDRECNO + J

c-27

PRINT "NXRECNO = ENDRECNO rLn
PRINT "EXIT SUB"

SUB INIT (FILENAMES, FILENAME1$)

THRRBREAR
'Purpose....... et \ Initialize parameters on both circular
-~--=>buffers

! \ Initialize sums to zero. Let user choose partic-

! \ ular run for analysis. Determine aid type for

! \ subsequent branching. Open FILESCNS$, FILEDATS,

! \ FILEACPS and store their lengths.

'Parameters.........\ none

'Other input data.......\

‘Input files............ \ FILESCN$, FILEDATS, FILEACPS$

'Output files........... \

'Other output data...... \ File names & unit #'s. Initialized vari
-—-==>ables, sums

! \ and pointers and the branch variable IAID

'Function calls......... \ LOGS$

'Subroutine calls....... \ none

TCOmMENtE. et \ I don't think I'm using this BOP stuff.

THERRRNER NN

SHARED NBUFPARM(), ITRIG

' SIZE, FIRST, LAST, EOF

SHARED FLAGFUL AS INTEGER, NXRECNO AS INTEGER
SHARED FILEMRG$

SHARED FILEMRGS

SHARED IAID AS INTEGER
STARS = " 2123222222222 222 22323 222222 222222 A AR AR R R Rl hhd

_..__>***ﬁ*ttt*ll
8B§ = " (INIT *
NBUFPARM(2) = 1: NBUFPARM(3) = NBUFPARM(1l) + 1: NBUFPARM(4) = 0
NXRECNO = 1

..

--

SELECT CASE MID$ (FILENAME1§, 5, 1)
CASE "M"
IAID = 1
CASE "D"
IAID = 2
CASE "G"
IAID = 3
CASE "8"
IAID = 4
CASE ELSE
IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOG$(SB$, "CASE FROM FILENAME MUST BE MN,D
---->C,GR or SL"): PRINT : STOP

c-28

IAID1 = VAL (MIDS$ (FILENAME1S$, 7, 1))

IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOGS$ (SB$, "CASE FROM FILE
--==>NAME MUST BE 170 OR 210"): PRINT : STOP

IAID = IAID * 10 + IAID1: PRINT STARS: PRINT FILENAMES$, IAID

FILEMRGS = FILENAMES + " .MRG": FILEMRGS = 2

OPEN FILEMRGS FOR INPUT AS #FILEMRGS

LOGFILES = FILENAMES$ + ".LOG": LOGFILE% = 5

OPEN LOGFILES FOR APPEND AS #LOGFILE%

PRINT #5, S8TAR$: PRINT #5, FILENAMES, IAID

OPEN "CROSS.PRT" FOR OUTPUT AS #3

CALL FILLBUF: FLAGFUL = 1

SUB PRINTSEQ (LAPOVER)

SHARED IAID AS INTEGER

SHARED ASTORE AS FIXCOMB, ARECNO AS INTEGER, ENDRECNO AS INTEGER,
----> BSTORE AS FIXCOMB, ENDSTORE AS FIXCOMB

SHARED APSTORE AS FIXCOMB, BPSTORE AS FIXCOMB, APRECNO, ENDPRECNO

---->, LPSEQ, ISEQTP, ITLAP, ITLAPP
SHARED LSEQ, LASTREC, ISEQORD
SHARED IAT, IET, ISEQT, NONSEQT, TOTSEQT, TOTLPV, TOTNSEQT 'W“#+##

-=~==->TIME
XXX18 = " ##8E FNEE SN R 44 BN
ox28 =" N NN N NN N\ deee
XXX3§ =" t 1 4 v
XXX4$ = " 1 1 HEME W
XXX58 = " \ \ N\ \ #HE Sddar
ITLAP = 0

ISEQORD = ISEQORD + 1
IF LAPOVER = 1 THEN
ITLAP = ASTORE.FIXLNGTH
ITLAPP = ITLAPP + ASTORE.FIXLNGTH
END IF
IF ISEQORD > 1 THEN
D = SQR((APSTORE.TGTX - BPSTORE.TGTX) ~ 2 + (APSTORE.TGTY -
---=->BPSTORE.TGTY) * 2)
ZA$ = LEFTS (APSTORE.ZONE, 1): ZB$ = LEFTS$ (BPSTORE.ZONE, 1)
PRINT #7, USING XXX1$:; ISEQORD - 1; APRECNO; ENDPRECNO; LPSE
-===>Q; APSTORE.TGTTYPEN; BPSTORE.TGTTYPEN;
PRINT #7, USING XXX2$; APSTORE.TGTTYPEC; BPSTORE.TGTTYPEC; A
~--=->PSTORE.TGTID; BPSTORE.TGTID; ISEQTP;
PRINT #7, USING XXX3§$; ZA$; ZB$; APSTORE.AIDON; BPSTORE.AIDO
-===>N;
PRINT #7, USING XXX4$; APSTORE.SPEED; BPSTORE.SPEED; ITLAPP;
~===>D;
PRINT #7, USING XXX5$; APSTORE.HEADING; BPSTORE.HEADING; APS
—====>TORE . COUNTDOWN; BPSTORE . COUNTDOWN
TOTLPV = TOTLPV + ITLAPP
END IF
APSTORE = ASTORE: BPSTORE = BSTORE: APRECNO = ARECNO: ENDPRECNO =

C-29

—=-=~> ENDRECNO
LPSEQ = LSEQ: ISEQTP = ISEQT: ITLAPP = ITLAP
END 8UB

c-30

'DEFINT I-N
START:

TYPE

DDAT

TT AS INTEGER
XX A8 INTEGER
YY A8 INTEGER
PD A8 INTEGER
FT AS INTEGER

END TYPE
DIM X1 AS DDAT
DIM X2 AS DDAT
DIM X3 AS DDAT
PN R T R R R S X2 R IR Y
AB§ = " CUT20.BAS " + DATES + " " 4+ TIMES
AC§ = " In accordance with the 8/28/91 memo from DJC to RBF 20 r
---->acords from"
AD§ = " 14 files need to be cut out. The record(s) taken from th
---->is file are"
AES = " ljsted here. "
INPUT " Enter full file descriptor for index file ", INDEXS$
OPEN INDEX$ FOR INPUT AS #3 'Input directives
LGTOTS = LEPFTS (INDEX$, LEN(INDEXS$) - 8) + "LOG.TOT"
OPEN LGTOT$§ FOR OUTPUT AS #4 'Concatenated log file
DO WHILE NOT EOF(3) ' Loop through one subject's files #3
PRINT : PRINT
INPUT #3, FLES ' FILE NAME
IF FLE§ = "" THEN EXIT DO
INPUT #3, NOD ' NUMBER OF DELETIONS
FOR I = 1 TO NOD
INPUT #3, NOR(I) 'Record #'s to be deleted
NEXT 1

NOR(NOD + 1) =0

NN$ = FLE$ + ".DT2"

N1§ = FLE$ + ".DT1"

LGS = FLE$ + ".LOG"

OPEN LG$ FOR APPEND AS #5
PRINT NN$

T% = 0O

ON ERROR GOTO NOSUCHFILE
OPEN N1§ FOR INPUT AS #1 'Can find .DT1 file?? #1
ON ERROR GOTO O

IF T% = 1 THEN GOTO START

CLOSE 1

OPEN "R", #1, N1§, 10 ' Open .DT1 in random mode
LENFLES = LOF(1) / 10

DNl = LENFLE% ' Floating peoint

OPEN NN§ FOR RANDOM AS #8 LEN = 10

IF LOF(8) <> 0 THEN STOP ' Open DT2 in random mode #8
PRINT #4, AAS: PRINT #4, ABS$, FLES$: PRINT #4,

PRINT #4, AC$: PRINT #4, ADS: PRINT #4, AE$ ' Preamble #4
PRINT #5, AA$: PRINT #5, AB$, FLE$: PRINT #5,

PRINT#5, ACS$: PRINT #5, ADS$: PRINT #5, AE$ ' Preamble #5

{2

C-31

K=1
FOR I = 1 TO LENFLES' FILTER #1 INTO #8
GET #1, , X1
IF I <> NOR(K) THEN
PUT #8, , X1

ELSE
K=K+ 1
PRINT I; X1.TT; X1.XX; X1.YY; X1.PD; X1.FT
PRINT "TO SAVE THIS RECORD TYPE IN NO. OTHERWISE C/R"
INPUT A$
IF UCASES (LEFTS$ (A8, 1)) = "N" THEN
PUT #8, , X1
ELSE
PRINT #4, USING "The following record , ##### ,has been
—===> deleted"; I
PRINT #4, I; X1.TT; X1.XX; X1.YY; X1.PD; X1.FT
PRINT #5, USING "The following record , ##### ,has been
—===> deleted"; I
PRINT #5, I; X1.7TT; X1.XX; X1.YY; X1.PD; X1.FT
END IF
END IF
NEXT I
CLOSE 1, 5, 8
LOOP
CLOSE 3, 4
)
END
NOSUCHFILE:
PRINT "Couldn't find input file "; FLE$
T™ = 1

RESUME NEXT

C-32

Foverper

DECLARE FUNCTION LOG$ (SB$§, AS$)

DEFINT I-N

NOR% = 1

8TART:

PRINT " This program lists records from FASA Time History files."

DO

PRINT : PRINT 'CLS ?

INPUT " ENTER TIME HISTORY FILE NAME, NO EXTENSION ", FILE
--==>NAMES$

IF FILENAME$ = "" THEN PRINT : PRINT : PRINT : STOP

SB§ = " (DMPIDX "

FILEACP$ = FILENAMES + ".ACP": FILEACP% = 3'append extension

FILEIDX$ = FILENAMES + ".IDX": FILEIDX% = 4

T% = 0

CLOSE

ON ERROR GOTO NOSUCHFILE

OPEN FILEACP$ FOR INPUT AS FILEACP%

OPEN FILEIDX$ FOR INPUT AS FILEIDX%

ON ERROR GOTO O

IF T$ = 1 THEN GOTO START

LENFLES = LOF(FILEIDX%) / 10

PRINT "The number of 4-second print outs on the file is : ";

—--==> LENFLE%
DO
PRINT
INPUT "STARTING RECORD # ? "; RNI%
IF RNI% <= O OR RNI% > LENFLES% THEN
PRINT " Record number out of range."
EXIT DO
END IF
FOR I% = 1 TO NOR%
SEEK FILEIDXS%, (RNI% + I% - 2) * 10 + 1
INPUT #FILEIDXS%, ACPPOS&
SEEK #FILEACP%, ACPPOS&
INPUT #FILEACP%, NOAC%, T%
IF EOF(FILEACP%) THEN PRINT LOGS$ (SBS$, " A***EOF(FILEACP
—=—=D>f) **xn) . T, J: EXIT DO
PRINT NOAC%; " Aircraft "; " Time is "; T%
FOR J = 1 TO Noz%%
LINE INPUT #FILEACP%, A$ 'INPUT AIRCRAFT
IF EOF(FILEACP%) THEN PRINT LOG$ (SB§, " B***EOF(FI
—==->LEACPS%) *##*#%v); TI. J: EXIT FOR
PRINT A$
NEXT J

IF EOF(FILEACP%) THEN PRINT LOGS (SBS, " C***EOF(FILEACP
——==D>%) *kxn) . T: J: EXIT DO

INPUT #FILEACP%, NOTURNS%, NOSLOTS%, NODICE%

IF EOF (FILEACP%) THEN PRINT 1.0G$ (SB§, " D***EOF(FILEACP
———=D>f) t**n) . TI; J: EXIT DO

PRINT NOTURNS%, NOSLOTS%, NODICE%

NOSYM& = NOTURNSS + NOSLOTS% + NODICE%

Cc-33

NEXT
LooP

IF NOSYM& <> O THEN
FOR J = 1 TO NOSYM%
K = J + NOAC%

LINE INPUT #FILEACP%, A$ 'INPUT SYMBOLS
IF EOF(FILEACPS%) THEN PRINT LOG$ (SB$, " E#++E
-===>O0F (FILEACPS) *#**") : I; J: EXIT FOR
PRINT A$
NEXT J

END IF

IF EOF(FILEACPS) THEN PRINT LOGS$ (SB§, " F**+EOF(FILEACP
—-—=2>%) *ekv) : T; J: EXIT DO

I%

CLOSE 1

LOOP

NOSUCHFILE:
PRINT "Couldn't find input file "; FLE$

T = 1

RESUME NEXT

c-y4

- -

PROGRAM DMPDAT

S8TART:
PRINT " This program lists records from oculometer .DAT files."

DO
PRINT : PRINT
INPUT "enter file name"; FLE§
IF FLE$ = "" THEN END
T% = O
ON ERROR GOTO NOSUCHFILE
OPEN FLE$ FOR INPUT AS #1
ON ERROR GOTO O
IF T4 = 1 THEN GOTO START
CLOSE 1
OPEN "R", #1, FLE$§, 8
FIELD #1, 2 AS A$, 2 AS B§, 2 AS C$, 2 AS D$
LENFLES = LOF(1) / 8
PRINT "The number of records on the file is : "; LENFLES%
DO
PRINT
INPUT "STARTING RECORD # "; RNI%
IF RNI% = 0 THEN EXIT DO
INPUT "LAST RECORD # "; RNMAXS
IF RNMAX% = 0 THEN EXIT DO
IF RNMAXS% < 0 OR RNMAX% > LENFLE% THEN RNMAX% = LENFLE%
IF RNI% < O OR RNI% > RNMAXS% THEN RNI% = RNMAXS
FOR I% = RNI% TO RNMAX%
GET #1, I%
PRINT I\, CVI(A$), CVI(B§), CVI(C$), CVI(D$)
NEXT I%
LOOP
CLOSE 1
LOOP
NOSUCHFILE:
PRINT "Couldn't find input file "; FLE$
TG = 1

RESUME NEXT

C-35

'‘Started 1/6/93 to generate histograms of fixation times on Tag
DECLARE SUB HISTOGRAM ()
DECLARE SUB PROUT2 ()
DECLARE SUB ACCUMULATE ()
DECLARE SUB INIT (filename$, filenamel$)
DECLARE FUNCTION LOG§ (SB$§, AS$)
DECLARE FUNCTION LOGS$ (SB§, AS)
DECLARE SUB SEARCH ()
DECLARE SUB GETXXA (FILENO%)
DEFINT I-N
CONST pi! = 3.14159
CONST SF! = .472, XOFF! = -5.04, YOFF! = -.9, cpi! = 204.8, alpha
-—==>! = -11.5 * pi! / 180, runoff! = -.34
CONST big! = 3!, little! = 1!
TYPE FIXCOMB
TGTTYPEN AS INTEGER 'NON ZERO MEANS HIT
TGTTYPEC AS STRING * 4 'TARGET TYPE
FIXLNGTH AS INTEGER
PUPDIAM AS INTEGER

TGTID AS STRING * 3 'ID OF CLOSEST TARGET
DISTANCE AS SINGLE 'BETWEEN CLOSEST TARGET AND FIXATION
FRAMENO AS INTEGER '"TIME HISTORY FRAME #

TGTX AS SINGLE ' TARGET POSITION

TGTY AS SINGLE

FIXX AS SINGLE 'FIXATION POSITION

FIXY AS SINGLE

HEADING AS STRING * 3 'DICE

COUNTDOWN AS INTEGER 'DICE

CONTFIX AS STRING * 1 'IS THIS A CONTINUATION OF TH

---=>E PREVIOUS FIXATION
CROSSCHECK AS STRING * 1
ZONE AS STRING * 2 'WHAT AREA OF THE TUBE IS THE FIXATION?

SPEED AS STRING * 1 *SPLADT 8-on, F-off
AIDON AS STRING * 1 ‘A-on, F-off
SPARE AS STRING * 8
END TYPE
DIM AAAAS
DIM frmt$
FrmtS = "H8 / /7 HRRE RRER /7 RN RS RERE SRR RE REN BN RNE NF ¥
——==DHE L B BER RER 2 2 /0

DIM XX AS FIXCOMB

DIM XXX$

DIM IAID AS INTEGER

DIM BI1P(1 TO 7) AS INTEGER'Buffered Input 1

DIM BI2P(1 TO 7) AS INTEGER'Buffered Input 2

DIM BOP(1 TO 7) AS INTEGER '‘Buffered Output
DIM FILEDUMS$, FILEMRGS, filebcl$

DIM FILEDUMS, FILEMRGY%, filebcl%

DIM NUMINTRACK, NUMOUTTRACK AS INTEGER

DIM SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG

' ** FILE NUMBERS **

' #1 FILE INDEX #2 #3 ‘modified 1/5/93

C-36

! #4 #5 #6
! #7 puM #8 BC1 #9
[}
DIM PAGES$, FONTS
DIM SPSINV!, SBS$§
SPSINV! = 1 / 30: SB§ = " (A1HIST "
NOSTATSY = 10
DIM STATXS (NOSTATS), STATYS (NOSTAT%) AS SINGLE
DIM STATID (NOSTATS®) AS STRING * 4
DATA "DEN % ' "IOoC " ' "OM " ' "KEAN" ' "ELTS" , nWIVS™" ' "RBYSN" " TROZ" ' "DRK
-—-0N , "JASN"
FOR I = 1 TO NOSTAT®: READ STATID(I): NEXT I
DATA 2.38,-19.49,-0.3,19.44,10.92,-10.24,-23.07,-8.22,29.42,14.67
FOR I = 1 TO NOSTATS: READ STATXS(I): NEXT I
DATA -.63,24.92,6.1,28.79,14.1,14.1,-26.08,-11.24,-19.56,-9.23
FOR I = 1 TO NOSTATS: READ STATYS(I): NEXT I
PRTCONTROLS = CHR$(33) + "R" + CHR$(33)
PAGE$ = PRTCONTROLS$ + " ;PAGE;EXIT;" 'OFFICE
FONT$ = PRTCONTROLS$ + ";RES;FONT 62; EXIT;" 'OFFICE
DIM SINAL!, COSAL!
SINAL! = SIN(alpha!): COSAL! = COS(alpha!)
XXXS = "#8 N\ O\ #8438 SHEE O\ O\ BN BN BN HRE_ 4 BER_ B BEE RN B
——==D ¥ RAH RERER 2 1 \\
DIM NCTR AS INTEGER, NORT AS INTEGER, NOBKT AS INTEGER
NOBKT = 15: NOC = 15
DIM AACOUNT (NOC, 3) AS LONG, AASUM(NOC, 3) AS LONG, AASUMSQ(NOC,
---=->3) AS LONG
DIM AAALL(NOC, NOBKT%) AS LONG, AANOTON (NOC, NOBKTS%) AS LONG, ARO
---->N(NOC, NOBKT%) AS LONG
DIM BBCOUNT(3) AS LONG, BBSUM(3) AS LONG, BBSUMSQ(3) AS LONG
DIM BBALL (NOBKT%) AS LONG, BBNOTON (NOBKT%) AS LONG, BBON (NOBKT%)
--==>A8 LONG
DIM AVG AS SINGLE, 8TD AS SINGLE
FOR I = 1 TO 3: BBCOUNT(I) = O0: BBSUM(I) = 0: BBSUMSQ(I) = 0: NEX

-===>T I

FOR I = 1 TO NOBKT%: BBALL(I) = O: BBNOTON(I) = 0: BBON(I) = 0: N

--=-2EXT I
NCTR = O
1
AAAAS = " MAIN-START MAIN LOOP"
INPUT " Enter full file descriptor for index file ", index$
OPEN index$ FOR INPUT AS #1
INDEX18 = LEFTS$ (index$, LEN(index$) - 4) ‘modified 1/5/93
filebcl$ = INDEX1$ + ".BCl": filebclh% = 8 '‘modified 1/5/93
OPEN filebcl$ FOR OUTPUT AS #filebcl% ‘modified 1/5/93
PRINT #filebcl%, LOGSS$(SBS, " ")

DO WHILE NOT EOF (1)
INPUT #1, filename$
IF LEN(filename$) < 8 THEN EXIT DO 'modified 1/5/93
filenamel$ = RIGHTS (UCASES$ (filename$), 8)
CALL INIT(filename$, filenamel$)
NCTR = NCTR + 1

C-37

FOR I =1 TO 3

AMCOUNT(NCTR, I) = O: AASUM(NCTR, I) = 0: AASUMSQ(NCTR, I) =
~—==> 0: NEXT 1

FOR I = 1 TO NOBKT%

AAALL (NCTR, I) = O: AANOTON(NCTR, I) = O: AAON(NCTR, I) = O:

-===> NEXT I

CALL SEARCH

PRINT #filebcl%, filenamel$; " # of rec's= "; NORT;

PRINT #filebcl%, " Tag Avg & Std= "; AVG; 8TD

PRINT filenamel$; " # of rec's= "; NORT;

PRINT " Tag Avg & 8td= "; AVG; STD

LooP

CALL PROUT2
PRINT #£il@bC1A, "Wt wdthdhdrk btk A kA bk bk NNk A AR RN AR h b a s

e e Y 22 2222 L)
CLOSE 1, 8 ‘modified 1/5/93

END ' MAIN PROGRAM 'DUMMYPAGES$?r?; PAGE;EXIT;

SUB ACCUMULATE
SHARED XX AS FIXCOMB

SHARED AACOUNT() AS LONG, AASUM() AS LONG, AASUMSQ() AS LONG
SHARED AAALL() AS LONG, AANOTON() AS LONG, AAON() AS LONG
SHARED BBCOUNT() AS LONG, BBSUM() AS LONG, BBSUMSQ() AS LONG
SHARED BBALL() AS LONG, BBNOTON{) AS LONG, BBON() AS LONG
SHARED AVG A8 SINGLE, STD AS SINGLE

SHARED NCTR AS INTEGER, NORT AS INTEGER, NOBKT AS INTEGER

----------- ® 3 s e v 2 e e v e s s ® 8 2 @ 8 % s 8 8 m e s B S 4B P E PSS B e e s s e

AACOUNT (NCTR, 1) = MCOUNT(NCTR 1) + 1

AASUM(NCTR, 1) = AASUM(NCTR, 1) + XX.FIXLNGTH 'Sum
DUMLONG& = XX.FIXLNGTH: DUMLONG& = DUMLONG& * DUMLONG&
AASUMSQ (NCTR, 1) = AASUMSQ(NCTR, 1) + DUMLONG& 'Sum of “2
BBCOUNT (1) = BBCOUNT(1) + 1: BBSUM(1l) = BBSUM(l) + XX.FIXLNGTH
-===>'Sum
BBSUMSQ (1) = BBSUMSQ (1) + DUMLONG& 'Sum of “2
IF XX.AIDON = "1" THEN
AACOUNT (NCTR, 3) = AACOUNT(NCTR, 3) + 1
AASUM(NCTR, 3) = AASUM(NCTR, 3) + XX.FIXLNGTH ' Sum
AASUMSQ (NCTR, 3) = AASUMSQ(NCTR, 3) + DUMLONG& '808Q'S
BBCOUNT(3) = BBCOUNT(3) + 1: BBSUM{(3) = BBSUM(3) + XX.FIXLNG
--~=>TH 'Sum
BBSUMSQ(3) = BBSUMSQ(3) + DUMLONG& 'Sum of “2
ELSE
AACOUNT (NCTR, 2) = AACOUNT(NCTR, 2) + 1
AASUM(NCTR, 2) = AASUM(NCTR, 2) + XX.FIXLNGTH ' Sum
AASUMSQ (NCTR, 2) = AASUMSQ(NCTR, 2) + DUMLONG& '8S08Q'S
BBCOUNT (2) = BBCOUNT(2) + 1: BBSUM(2) = BBSUM(2) + XX.FIXLNG
---=>TH 'Sum
BBSUMSQ(2) = BBSUMSQ(2) + DUMLONG& 'Sum of *2

c-38

END IF
END 8UB

SUB HISTOGRAM
SHARED XX AS FIXCOMB
SHARED IAID AS INTEGER

--

SHARED AACOUNT () AS LONG,
SHARED AAALL() AS LONG, AANOTON() AS LONG,
SHARED BBCOUNT() AS LONG,
SHARED BBALL() AS LONG, BBNOTON() AS LONG,

SHARED AVG AS SINGLE, STD AS SINGLE
SHARED NCTR AS INTEGER, NORT AS INTEGER, NOBKT AS INTEGER

FT = XX.FIXLNGTH: FT = FT / 30: FT = (FT - AVG) / STD'NORMALIZE F

SELECT CASE FT
CASE 18 < -3.25
I =1
CASE I8 < -2.75
I =2
CASE I8 < -2.25
I =3
CASE IS < -1.75
I =4
CASE IS < -1.25
I =35
CASE I8 < -.75
I =6
CASE IS < -.25
I =7
CASE I8 < .25
I =28
CASE I8 < .75
I =9
CASE 18 < 1.25
I =10
CASE I8 < 1.75
I =11
CASE IS < 2.25
I =12
CASE I8 < 2.75
I =13
CASE I8 < 3.25
I =14
CASE IS >= 3.25
I =15
END SELECT

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

'CENTER ON

3.

3.

AASUM() AS LONG,

BBSUM() AS LONG,

o]

5

AASUMSQ() AS LONG
AAON() AS LONG
BBSUMSQ() AS LONG
BBON() AS LONG

-=—=-=>IXATION TIME

AAALL (NCTR, I) = AAALL(NCTR, I) + 1: BBALL(I) = BBALL(I) + 1

IF XX.AIDON = "1" THEN

AAON (NCTR, I) = AAON(NCTR, I) + 1: BBON(I) = BBON(I) + 1

ELSE

C-39

AANOTON (NCTR, I) = AANOTON(NCTR, I) + 1: BBNOTON(I) = BBNOTON(I)

————d+ 1
END IF
END 8UB
SUB INIT (filename$, fllename1$)
rHENRRANR Y
'PUrPOS@®.ttt c e \ Initialize parameters on both circular
---->buffers
! \ Initialize sums to zero. Let user choose partic-
! \ ular run for analysis. Determine aid type for
' \ subsequent branching. Open FILESCN$, FILEDATS,
' \ FILEACP§ and store their lengths.
‘Parameters............. \ none
'Other input data.......\
'Input files............ \ FILESCN$, FILEDATS$, FILEACP$
tOoutput files........... \
'Other output data...... \ File names & unit #'s. Initialized vari
---=>ables, sums
' \ and pointers and the branch variable IAID
‘Function calls......... \ LOGS
'Subroutine calls....... \ none
'‘Comments............... \ I don't think I'm using this BOP stuff.
THERERNARNY
SHARED BI1P() AS INTEGER 'BufferediInput 1
SHARED BI2P() A8 INTEGER 'BufferedInput 2
SHARED BOP() AS INTEGER 'BufferedOutput

SHARED FILEDUM$, FILEMRGS, filebcl$
SHARED FILEDUMS, FILEMRGS, filebclh
SHARED IAID AS INTEGER
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SB$ = " (INIT "
'SIZE, FIRST,LAST, TRIG,NREC, NEOF, Pl
I = nscanbuf: BI1P(1l) = I: BI1P(2) = O0: BI1P(3) = 1: BI1lP(4) = .2
-———=> *1
BI1P(5) = .7 * I: BI1P(6) = 0: BI1P(7) =1
'POR L = 1 TO 7: print BI1lP(L): NEXT L
I = nfixbuf: BI2P(1) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) = .2
————>% T
BI2P(5) = .7 * I: BI2P(6) = 0: BI2P(7) =1
I = nfixbuf: BOP(1) = I: BOP(2) = 1: BOP(3) = 1: BOP(4) = .9 * I
BOP(5) = .8 * I: BOP(6) = O0: BOP(7) =1
SELECT CASE MID$ (filenamel$, 5, 1)
CASE I!M"
IAID = 1
CASE IID"
IAID = 2
CASE IIGII
IAID = 3
CASE "s“

C-40

IAID = 4
CASE ELSE
IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOGS (S8B§, "CASE FROM FILENAME MUST BE MN,D
---=>C,GR or 8L"): PRINT : STOP
IAID1 = VAL(MIDS (filenamel$, 7, 1))
IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOGS$ (SB§, "CASE FROM FILE
--=-=>NAME MUST BE 170 OR 210"): PRINT : STOP
IAID = IAID * 10 + IAIDl1: PRINT IAID
'FILEDUM$ = FILENAME$ + ".DUM": FILEDUM§ = 7 '‘modified 1/5/93

FILEDUMS = filename$ + ".MRG": FILEDUMS = 7 ' modified 1/5/93
FILEMRGS = filename$ + ".MRG": FILEMRGY = 6
'FILEBC1$ = filename$ + ".BCl": FILEBCl% = 8 ' COMMENT

---=>: FILE NAME SHOULD LOOK LIKE
' nC:\FASAFILE\CRONE\CC10SLCE"

--

END SUB ' INIT ' DUMMY PAGE § ?r?; PAGE ; EXIT;

SUB PROUT2

SHARED FILEDUMS$, FILEMRG$, filebcl$

SEARED FILEDUMS, FILEMRGS, filebcl$

SHARED SPSINV!, SB§

SHARED AACOUNT() AS LONG, AASUM() AS LONG, AASUMSQ() AS LONG
SHARED AAALL() A8 LONG, AANOTON() AS LONG, AAON() AS LONG
SHARED BBCOUNT() AS LONG, BBSUM() AS LONG, BBSUMSQ() AS LONG
SHARED BBALL() AS LONG, BBNOTON() AS LONG, BBON() AS LONG
SHARED AVG AS SINGLE, STD AS SINGLE

SHARED NCTR AS INTEGER, NORT AS INTEGER, NOBKT AS INTEGER
SB$ = " (PROUT2 "

PRINT #filebolt,

F3018 = v ALL ": F3028 = " OFF "
F303§ = v ON "
F3§ = ¢ n Sum Sumsq "

PRINT #filebocls, F301§, F302§, F303$
PRINT #filebol%, F3§; F3§; F3§
FAAS = " HU0E. SRRREE. HUNNNNNS . "
FOR J = 1 TO NCTR
FOR I = 1 TO 3
PRINT #filebcl%, USING F4A$; AACOUNT(J, I); AASUM(J, I); AAS
---->UMSQ(J, I):
NEXT I
PRINT #filebclh,
NEXT J
PRINT #filebcl$,
PRINT #filebcl%, " Composite Tag Avg & Std= "
FOR I =1 TO 3
IF BBCOUNT(I) > O THEN

C-41

AVG = 0: 8TD = 0
FOR J = 1 TO NCTR: AVGT = AASUM(J, I): AVGT = AVGT / AACOUNT
-===>(J, I)
AVG = AVG + AVGT / 30: 88 = AASUMSQ(J, I): 88 = SS / AACOUNT
———=>(J, T)
88 = SQR(88 - AVGT * AVGT) / 30
STD = 8TD + 88: NEXT J
AVG = AVG / NCTR: STD = STD / NCTR
PRINT #filebcl%, AVG; S8TD; " ",
END IF
NEXT I
PRINT #filebocls,
FOR I = 1 TO 3: PRINT #filebcl$, USING F4A$; BBCOUNT(I); BBSUM(I)
--—-=>; BBSUMSQ(I); : NEXT I
PRINT #filebcls,
AGTOTALLG = 0: AGTOTNOTE& = 0: AGTOTON& = 0
FOR I = 1 TO NCTR
ATOTALLG = 0: ATOTNOT& = O: ATOTON& = O
FOR J = 1 TO NOBKT
ATOTALL& = ATOTALL& + AAALL(I, J)
ATOTNOT& = ATOTNOT& + AANOTON(I, J)
ATOTONEL = ATOTON& + AAON(I, J)
NEXT J
AGTOTALLE& = AGTOTALL& + ATOTALLSG
AGTOTNOT& = AGTOTNOT& + ATOTNOTS
AGTOTON& = AGTOTON& + ATOTON&
NEXT I
BTOTALL& = O0: BTOTNOT& = O0: BTOTON& = 0
FOR J = 1 TO NOBKT
BTOTALL& = BTOTALL& + BBALL(J)
BTOTNOT& = BTOTNOT& + BBNOTON (J)
BTOTON& = BTOTON& + BBON(J)
NEXT J
PRINT #filebclh,
PRINT #filebcl%, "A,B Counts ="; AGTOTALLS&; BTOTALL&, AGTOTNOTE;
~-=-=>BTOTNOTE,
PRINT #filebcl%, AGTOTON&; BTOTON&
PRINT #filebcls,
PRINT #filebol%, "Each pair should be equal and the 2'nd two shou
---->1d add up to the 1l'st."
PRINT #filebcls,
PRINT #filebcl%, "Histograms for each run in 1/2 STD intervals.";
PRINT #filebcl%, "Last entry is check sum."
F1$ = " ###r
F2§ = " -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0"
PRINT #filebcls, F2§
FOR I = 1 TO NCTR
PROBSUM = 0
FOR J = 1 TO NOBKT
PROB = AAALL(I, J): PROB = PROB / AACOUNT(I, 1)
PROBSUM = PROBSUM + PROB
PRINT #filebcl%, USING F1§; PROB;
NEXT J

C42

PRINT #filebcl%, PROBSUM
NEXT I
PROBSUM = 0O
PRINT #filebclh,
PRINT #filebcl$, "Cumulative histograms in 1/2 STD intervals.
PRINT #filebcl$, F2§
FOR J = 1 TO NOBKT
PROB = BBALL(J): PROB = PROB / BBCOUNT(1)
PROBSUM = PROBSUM + PROB
PRINT #filebcl%, USING F1§; PROB;
NEXT J
PRINT #filebcl%, PROBSUM
PROBSUM = 0
IF BBCOUNT(2) <> O THEN
FOR J = 1 TO NOBKT
PROB = BBNOTON(J): PROB = PROB / BBCOUNT(2)
PROBSUM = PROBSUM + PROB
PRINT #filebcl%, USING F1$; PROB;
NEXT J
PRINT #filebcl%, PROBSUM
END IF
PROBSUM = 0
IF BBCOUNT (3) <> O THEN
FOR J = 1 TO NOBKT
PROB = BBON(J): PROB = PROB / BBCOUNT(3)
PROBSUM = PROBSUM + PROB
PRINT #filebcl%, USING F1§; PROB;

NEXT J

PRINT #filebcl%, PROBSUM
END IF
END SUB
SUB SEARCH
X112 ER112]
"PUXPOS®. . . ot i v e ansonn \
'Parameters............. \ none
'Other input data....... \
tInput files............ \ FILEDUMS
'output files........... \
'Other output data...... \
'Function calls......... \ LOGS$
'Subroutine calls....... \ GETXXA,
'‘Comments............... \
THRUNRRRRA N

SHARED AAAAS

SHARED FILEDUM$, FILEMRGS, filebcl$
SHARED FILEDUMS, FILEMRGR, filebcl%
SHARED XX A8 FIXCOMB

SHARED SINAL!, COSAL!

SHARED MCOUNT() AS LONG, AASUM() AS LONG, AASUMSQ() AS LONG
SHARED AAALL() AS LONG, AANOTON() AS LONG, AAON() AS LONG

"

c4

SHARED BBCOUNT() A8 LONG, BBSUM() AS LONG, BBSUMSQ() AS LONG
SHARED BBALL() AS LONG, BBNOTON() AS LONG, BBON() AS LONG
SHARED AVG AS SINGLE, STD AS SINGLE

SHARED NCTR AS INTEGER, NORT AS INTEGER, NOBKT AS INTEGER

SB$ = " (SEARCH "
FRMTACS = "### \ \ #HE_ 88 BRE_ B8 BEE \ \ SRE_HE HE8_ #4r
FRMTSYMHDRS = " ####4 ##8 #84 Héar
CLOSE 7
OPEN FILEDUM$ FOR APPEND AS #7
IF LOF(7) = O THEN
PRINT LOGS$ (SB$, "DUM FILE CAN NOT BE FOUND ")

EXIT SUB
ELSE
CLOSE 7: OPEN FILEDUM§ FOR INPUT AS #7
AAAAS = "SEARCH-START 1"
NORT = 0
DO WHILE NOT EOF(7)
CALL GETXXA(7) 'GET THE RECORD INTO XX
IF XX.TGTTYPEN = 15 THEN CALL ACCUMULATE ' If Tag
NORT = NORT + 1
LOOP
AVG = AASBUM(NCTR, 1l): AVG = AVG / AACOUNT(NCTR, 1)
AVG = AVG / 30: AVG2 = AVG * AVG
STD = AASUMSQ(NCTR, 1): STD = STD / AACOUNT(NCTR, 1)
STD = STD / 900: STD = SQR(STD - AVG2)
CLOSE 7: OPEN FILEDUM$ FOR INPUT AS #7
ARAAS = "SEARCH-START 2"
NORT1 = O
DO WHILE NOT EOF(7)
CALL GETXXA(7) '"GET THE RECORD INTO XX
IF XX.TGTTYPEN = 15 THEN CALL HISTOGRAM ' If Tag
NORT1 = NORT1 + 1
LooP
CLOSE 7
END IF
]
'.ll ----- L A e e I I I R T . T R T S I S S T T S
END 8UB 'SEARCH 'DUMMYPAGES$?r?;PAGE;EXIT;

C-44

PROGRAM DMPDT1
S8TART:
PRINT " This program lists records from oculometer .DAT files."
DO
PRINT : PRINT
INPUT "enter file name"; FLES$
IF FLE$ = "" THEN END
T = 0
ON ERROR GOTO NOSUCHFILE
OPEN FLE$ FOR INPUT AS #1
ON ERROR GOTO O
IF T% = 1 THEN GOTO START
CLOSE 1
OPEN "R", #1, FLES$, 10
FIELD #1, 2 AS T§, 2 AS A$, 2 AS B§, 2 AS c$, 2 AsS D§
LENFLES = LOF(1) / 10
PRINT "The number of records on the file is :@ "/ LENFLES
DO
PRINT
INPUT "STARTING RECORD # "; RNI%
IF RNI% = O THEN EXIT DO
INPUT "LAST RECORD # "; RNMAX%
IF RNMAX% = O THEN EXIT DO
IF RNMAXS < O OR RNMAXS > LENFLE%S THEN RNMAXS% = LENFLES%
IF RNIS < O OR RNI% > RNMAXS® THEN RNI% = RNMAXS%
FOR I% = RNI% TO RNMAX%
GET #1, I%
PRINT I%, CVI(T$), CVI(AS), CVI(B$), CVI(C$), CVI(DS)
NEXT I%
LOOP
CLOSE 1

LOOP

NOSUCHFILE:

PRINT "Couldn't find input file "; FLES$
TS = 1

RESUME NEXT

C45

DEFINT I
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
CONST pi

-N
SUB

FIN ()

FUNCTION HITS (VL%, ARRAY% (), N%)

SUB

INIT (F$, G$)

FUNCTION LOGS (SB$, AS$)
PICK (X!, Y!, TOTSYM%, K%, DISTANCE!)

SUB
sSUB
sSUB
SUB
SUB

CONST SF! =

CONST bi

SEARCH ()

TARGETSET (FRAMENO%, TOTSYM%, NODICES%)

GETXXA (FILENO%)
PUTXX (FILENO%)
3.14159

.472, XOFF! = -5.04, YOFF! = -.9, cpi! = 204.8, alpha

———>1

= -11.5 * pi! / 180, runoff! = -.34

g! = 3!, little! = 1.2
CONST tagwdth = .5, taght = .5, taglit = little! * SF! + .25, dw

———=>= 6

CONST xlistlm = 4.3, xlistbm = 3, omx = 6.1

TYPE FIXCOMB

TGTTYPEN AS INTEGER
TGTTYPEC AS STRING * 4
FIXLNGTH AS INTEGER
PUPDIAM AS INTEGER
TGTID AS STRING * 3
DISTANCE AS SINGLE
FRAMENO AS INTEGER
TGTX AS SINGLE

TGTY AS SINGLE

FIXX AS SINGLE

FIXY AS SINGLE
HEADING AS STRING * 3
COUNTDOWN AS INTEGER
CONTFIX AS STRING * 1
~---=->A CONTINUATION OF THE PREVIOUS FIXATION
CROSSCHECK AS STRING * 1

ZONE AS STRING * 2

SPEED AS STRING * 1
AIDON AS STRING * 1
SPARE AS STRING * 8

END TYPE

DIM AAAAS
DIM XX AS FIXCOMB

DIM XXX$
NOTG = 6

0

'NON ZERO MEANS HIT
'TARGET TYPE

'ID OF CLOSEST TARGET

'BETWEEN CLOSEST TARGET AND FIXATION
'TIME HISTORY FRAME #

'TARGET POSITION

'"FIXATION POSITION
'DICE

'DICE
'IS THIS

'WHAT AREA OF THE TUBE IS THE FIXATION?

'SPLADT S-on, F-off
'A-on, F-off

DIM ACID{1l TO NOTG) AS INTEGER
DIM ACX(1 TO NOTG) AS SINGLE
DIM ACY(1 TO NOTG) AS SINGLE
DIM AIDON(1 TO NOTG) AS STRING * 1
DIM COUNTDN (1l TO NOTG) AS INTEGER
DIM HEAD (1 TO NOTG) AS STRING * 3
DIM ROUTE (1 TO NOTG) AS INTEGER

DIM SPEEDON(1 TO NOTG) AS STRING * 1
DIM TIEPEC(1 TO NOTG) A8 STRING * 4

C-46

DIM TIEPEN(1 TO NOTG) AS INTEGER
DIM ZONE (1] TO NOTG) AS INTEGER
DIM dicehead% (1 TO 20)
DIM dicetime$ (1 TO 20)
DIM IAID A8 INTEGER
DIM FILEACPS$, FILEDATS$, FILEDUMS, FILEIDX$, FILEMRG$, FILESCNS$
DIM FILEACPS, FILEDATS, FILEDUMS, FILEIDX%, FILEMRG%, FILESCNS
DIM SHARED NUMFIX%, NUMSCANS, NOSTATS, NUMMRGS '*#*%*+COMMON*®#*##
DIM SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
DIM IDX(1 TO 2000) AS LONG
** FILE NUMBERS **

t

! #1 FILE INDEX #2 DAT #3 AcCP
! #4 IDX #5 #6 MRG
! #7 buM #8 #9

DIM PAGE$, FONTS
NOSTATY = 10
DIM STATXS (NOSTATS), STATYS (NOSTAT%) AS SINGLE
DIM STATID(NOSTAT%) AS STRING * 3
DATA "DEN","IOC","OM ", "KEN", "FLS", "WIV","BYS","TRZ", "DRK" , "JSN"
FOR I = 1 TO NOSTAT%: READ STATID(I): NEXT I
DATA 2.38,-19.49,-0.3,19.44,10.92,-10.24,-23.07,-8.22,29.42,14.67
FOR I = 1 TO NOSTAT®: READ STATXS(I): NEXT I
DATA -.63,24.92,6.1,28.79,14.1,14.1,-26.08,-11.24,-19.56,-9.23
FOR I = 1 TO NOSTATS: READ STATYS(I): NEXT I
SB§ = " (MAIN "
DIM SINAL!, COSAL!
SINAL! = SIN(alphat!): COSAL! = COS(alpha!)
XXXS = "8\ O\ HRRE BERE O\ O\ RE R RRRE BRE R R RS RRE R B
——m=> W RRE RENE 1 \\"
AAAAS = " MAIN-START MAIN LOOP"
INPUT " Enter full file descriptor for index file ", INDEX$
OPEN INDEX$ FOR INPUT AS #1
DO WHILE NOT EOF(1)
INPUT #1, FILENAMES$
IF FILENAME$ = "" THEN EXIT DO
FILENAME1$ = RIGHTS$ (UCASES$ (FILENAMES), 8)
CALL INIT(FILENAMES$, FILENAME1S$)
CALL SEARCH

PRINT LOGS$ (SB$, " FINISHED SEARCH")

'CALL PRNMRG (5767, 174)

CALL FIN 'Close FILES
LOOP
CLOSE 1

PRINT AAAA$

--

END ' MAIN PROGRAM 'DUMMYPAGES$?r?; PAGE ; EXIT;

SUB FiIN

THERRRRARNAN

'TPUXPOS®. . . c s et v v svasess \ Close all files, scale and output a few

C-47

----> statistics

'Parameters. \

'Other input data.......\ SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK,
—=—=>NUMINTRACK, NUMOUTTRACK

'Input files............ \

'Output files........... \

'Other output data......\

'Funoction ocalls.........\ LOGS

'Subroutine calls....... \

"Comments.ccc00: \

T HRNNRARR N

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
SB§ = "(FIN "
IF NUMINTRACK <> 0 AND NUMOUTTRACK <> O THEN
PRINT LOGS (SB§, "NUMBER OF IN TRACK FIXATIONS= ") ; NUMINTRAC

--==>K; ' totals for .txt file
PRINT LOGS(SBS, "NUMBER OF OUT TRACK FIXATIONS="); NUMOUTTRA
---->CK

PRINT USING "& ###### OR ####. ## SECONDS"; LOG$ (SB$, "TOTAL
-—=->TIME IN TRACK IS "); SUMINTRACK; SUMINTRACK / 30
PRINT USING "& ###### OR ####. ## SECONDS"; LOGS(SBS, "TOTAL
—-—=->TIME OUT TRACK IS "); SUMOUTTRACK; SUMOUTTRACK / 30
PRINT USING "& ###### OR ####_ ## SECONDS"; LOG$ (SB$, "TOTAL
-—==>FIXATION TIME IS "); SUMFIXLENGTH; SUMFIXLENGTH / 30
PRINT USING "& ###.## OR ##.## SECONDS"; LOGS$ (SB§, "AVERAGE
——-->IN TRACK FIXATION IS "); SUMINTRACK / NUMINTRACK; SUMINTRA
--—=>CK / NUMINTRACK / 30
PRINT USING "& ###.## OR ##.## SECONDS"; LOG$ (SB$, "AVERAGE
-—=->0UT TRACK FIXATION IS "); SUMOUTTRACK / NUMOUTTRACK; SUMOUT
---->TRACK / NUMOUTTRACK / 30
END IF
CLOSE 2, 3, 4, 6, 7

--

END SUB ' FIN 'DUMMYPAGES$?x?;PAGE ;EXIT;

FUNCTION HIT% (VL%, ARRAY%(), N%)

HITLS = O

FOR K = 1 TO N%

IF ARRAY®(K) = VL% THEN HITL% = K: EXIT FOR
NEXT K

HITS® = HITLS%

END FUNCTION

SUB INIT (FILENAMES, FILENAME1$)

THENRRARR R

'PUTPOS®.o v v s v \ Initialize parameters on both circular
---->buffers

! \ Initialize sums to zero. Let user choose partic-

' \ ular run for analysis. Determine aid type for

' \ subsequent branching. Open FILESCN$, FILEDATS,

C-48

' \ FILEACP$ and store their lengths.

‘Parameters............ .\ none

'Other input data.......\

'‘Input files......... ...\ FILESCN$, FILEDATS, FILEACPS

'Output files.......... BN

'Other output data......\ File names & unit #'s. Initialized vari

~-—=>ables, sums
! \ and pointers and the branch variable IAID

'Function calls.........\ LOG$

'Subroutine calls....... \ none

'‘Comments...... ve.22....\ I don't think I'm using this BOP stuff.
THENNRENR Y

SHARED FILEACPS$, FILEDATS$, FILEDUMS, FILEIDXS$, FILEMRG$, FILESCN$
SHARED FILEACPS, FILEDATS, FILEDUMS, FILEIDX%, FILEMRGS, FILESCN%
SHARED IAID AS INTEGER
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
gB§ = " (INIT "
NUMFIXS = 0: NUMSCAN% = 0
SUMFIXLENGTH = O: SUMINTRACK = 0: SUMOUTTRACK = 0
NUMINTRACK = 0: NUMOUTTRACK = 0
SELECT CASE MIDS$ (FILENAME1§, 5, 1)
CASE "M"
IAID = 1
CASE 'lDll
IAID = 2
CASE "G"
IAID = 3
CASE nsn
IAID = 4
CASE ELSE
IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOG$ (SB$, "CASE FROM FILENAME MUST BE MN,D
---->C,GR or SL"): PRINT : STOP
IAID1 = VAL (MIDS (FILENAME1l$, 7, 1))
IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOGS (SB$, "CASE FROM FILE
-——->NAME MUST BE 170 OR 210"): PRINT : STOP
IAID = IAID * 10 + IAID1: PRINT IAID
FILEACP$ = FILENAME$ + ".ACP": FILEACP% = 3 'append extension
FILEDUM$ = FILENAMES$ + ".DUM": FILEDUM% 7
FILEIDX$ = FILENAME$ + ".IDX": FILEIDX% 4
FILEMRGS = FILENAMES$ + ".MRG": FILEMRG% = 6
' COMMENT: FILE NAME ,SHOULD LOOK LIKE
' nc:\FASAFILE\CRONE\CC10SLCE"

------ « e o 4 8 e s s e s s e s a e e s

OPEN FILEACP$ FOR INPUT AS #3

NOBACP& = LOF(3) tcan the file be found

IF NOBACP& = O THEN
PRINT LOGS (SB$, FILEACPS); "FILE NOT FOUND" ' fix this test
EXIT 8UB

ELSE : PRINT LOGS$ (SB§$, "NUMBER OF ACP BYTES IS "): NOBACP&
Cc49

END IF

INPUT #3, FILEHDRS

INPUT #3, FILEHDRS

PRINT LOGS (SB$, FILEHDRS)

END SUB ' INIT ' DUMMYPAGE $?r?;PAGE ;EXIT;

SUB PICK (X!, YI, TOTSYM%, K, DISTMIN!)

THENBERRE Y
'PUXYPOS®. coonenennan \

\ (xXt, YY)

- ® - m w wm = -

\

\
Parameters............. \
'Other input data....... \
'Input files............ \
'Output files........... \
'Other output data...... \
tFunction calls......... \
'Subroutine calls....... \
Comments.c00000 \

' \ Now search
T HRNNERREEN

SHARED ACID() AS INTEGER
SHARED ACX() AS SINGLE
SHARED ACY () AS SINGLE
SHARED AIDON() AS STRING

Picks a target, the K'th entry in the a
-==-~->rrays ACX()

\ and ACY() to correspond to the look point position

TOTSYM% is the number of targets in the

\ array. If the subject is looking at both an aircraft
\ and turn marker or both an aircraft and slot then
\ the type is changed to 38/"ACTR" or 39/"ACSP"

or 28/"ACSL"

respectively

input (X!, Y!, TOTSYM%), output(K, DIS
~——=>TANCE!)
ACX(), ACY(), IAID, TIEPEC(), TIEPEN(),
-===> ACID()

none

none
TIEPEC(K), TIEPEN(K) selected target o
-==-=>nly

none

none
Formerly stopped search when distance <
-—==>= little!

continues for minimum over all targets.

* 1

SHARED COUNTDN () AS INTEGER

SHARED HEAD () AS STRING *

3

SHARED ROUTE() AS INTEGER
SHARED SPEEDON() AS STRING * 1
SHARED TIEPEC() AS STRING * 4
SHARED TIEPEN() AS INTEGER

SHARED ZONE() AS INTEGER
SHARED IAID AS INTEGER
DIM IDX(1 TO 20), IDXL AS

INTEGER

DISTANCE! = big!: DISTMIN! = 100: K = 0: IDXL = o

FOR I = 1 TO TOTSYM%

D1! = ABS (X! - ACX(I))

IF D1! <= DISTANCE!

THEN

D2! = ABS(Y! - ACY(I))

c-50

IF D2! <= DISTANCE! THEN 'HIT ON BIG

D3! = SQR(D1! * D1! + D2! * D2!)
IF D3! <= little! THEN
DISTANCE! = little!
IDXL = IDXL + 1
IDX(IDXL) = I

END IF
IF D3t < DISTMIN! THEN K = I: DISTMIN! = D3!
END IF
END IF
NEXT I
! - CHANGE TYPE ??°?

~
”

IF IDXL > 1 AND (IAID = 31 OR IAID = 41 OR IAID = 32 OR IAID = 42
SLOT ONLY

---=>) THEN ' TURN,
FOR I = 1 TO IDXL
J = IDX(I)

IF J <> K AND ACID(J) = ACID(K) THEN'DIF TARGET SAME ID

SELECT CASE TIEPEN (K)
CASE 10
SELECT CASE TIEPEN (J)
CASE 32, 33, 34, 35
TIEPEN(K) = 38: TIEPEC(K)
EXIT FOR
CASE 36
TIEPEN(K) = 39: TIEPEC(K)
EXIT FOR
CASE 20
TIEPEN (K) = 28: TIEPEC(K)
EXIT FOR
END SELECT
CASE 32, 33, 34, 35
IF TIEPEN(J) = 10 THEN
TIEPEN(K) = 38: TIEPEC(K)
EXIT FOR
END IF
CASE 36
IF TIEPEN(J) = 10 THEN
TIEPEN(K) = 39: TIEPEC(K)
EXIT FOR
END IF
CASE 20
IF TIEPEN(J) = 10 THEN
TIEPEN (K) = 28: TIEPEC(K)
EXIT FOR
END IF
END SELECT
END IF

--

"ACTR"

"Acsp“

"ACSL"

"ACTR"

"ACSP"

"ACSL"

C-51

END 8UB ' PICK ' DUMMY PAGE $?r?; PAGE ; EXIT;

SUB PUTXX (FILENO%)

THNNNER RGN

'Purpose................\ Writes a record from XX to the appropri
---->ate file.

'Parameters. \ FILENO%

'Other input data....... \ XX

'‘Input files............ \ none

'Output files...........\ FILEMRG$

'Other output data......\ none

'Function calls.........\ none

'Subroutine calls....... \ none

‘Comments...............\ This makes it easier to modify record ¢

-——-=20orm.
THENRRNNEE N

'Write the array XX to a record on the FILEMRGS file.
SHARED XX AS FIXCOMB
WRITE #FILENO®, XX.TGTTYPEN, XX.TGTTYPEC, XX.FIXLNGTH, XX.PUPDIAM
-===>, XX.TGTID, XX.DISTANCE, XX.FRAMENO, XX.TGTX, XX.TGTY, XX.FI
---->XX, XX.FIXY, XX.HEADING, XX.COUNTDOWN, XX.CONTFIX, XX.C
---~>ROSSCHECK, XX.ZONE, XX.SPEED, XX.AIDON, XX.SPARE

--

-------------------------- L R A R T T O I I I B I I R N I R e L

END SUB ' PUTXX ' DUMMY PAGE $?r?; PAGE ;EXIT;
SUB SEARCH

THRRRRREA Y

'PUXPOS®. cv i \

‘Parameters. \ none

'Other input data....... \

'Input files............ \ FILEIDX$, FILEACPS$, FILEMRGS
'Output files........... \ FILEDUM$ becomes FILEMRGS$
'Other output data......\

'Function calls......... \ LOGS

'Subroutine calls....... \ GETXXA, PICK, PUTXX, TARGETSET
'Comments. \

THRERNARENN

SHARED AAAAS

SHARED FILEACP$, FILEDATS$, FILEDUM$, FILEIDX$, FILEMRGS, FILESCN$
SHARED FILEACPS, FILEDATS, FILEDUMS%, FILEIDX%, FILEMRGS, FILESCN%
SHARED XX AS FIXCOMB

SHARED SINAL'!, COSAL!

SHARED ACID() AS INTEGER

SHARED ACX() AS SINGLE

SHARED ACY () AS SINGLE

SHARED AIDON() AS STRING * 1

SHARED COUNTDN({) AS INTEGER

SHARED HEAD () AS STRING * 3

SHARED ROUTE () AS INTEGER

SHARED SPEEDON() A8 STRING * 1

SHARED TIEPEC() AS STRING * 4

C-52

SHARED TIEPEN() AS INTEGER
SHARED ZONE() AS INTEGER
SHARED dicehead$ ()
SHARED dicetimes$()
SHARED STATID() AS STRING * 3
SBS = " (SEARCH "
FRMTACS = "#8# \ \ #4888 S88. 08 BEE \ \ S84 08 484 44r
FRMTSYMHDRS = " H#### H4# S84 H¥ar
CLOSE 3, 4, 6, 7
OPEN FILEIDX$ FOR INPUT AS #4
OPEN FILEACPS$ FOR INPUT AS #3
OPEN FILEMRGS FOR INPUT AS #6
OPEN FILEDUMS FOR OUTPUT AS #7
IF LOF(3) = O OR LOF(4) = 0 OR LOF(6) = 0 OR LOF(7) <> 0 THEN
PRINT LOGS$ (SB$, "LENGTHS OF ACP, IDX, MRG, DUMMY = "); LOF(3
-==-=>); LOF(4); LOF(6); LOF(7)
PRINT LOGS$ (8BS, "AT LEAST ONE FILE CAN NOT BE FOUND OR DUMMY
-===> FILE EXISTS")
EXIT SUB
ELSE
AAAAS = "SEARCH-START"
FRMNOM1& = 0
DO WHILE NOT EOF(6)
CALL GETXXA (6) 'GET THE RECORD INTO XX
IF XX.TGTTYPEC = "UNK " THEN
IF FRMNOM1% <> XX.FRAMENO THEN
AAAAS = "SEARCH-CALL TO TARGETSET"
CALL TARGETSET (XX.FRAMENO, TOTSYM%, NODICES%)
-———D> 'POSSIBLE TARGETS
AAAAS = "SEARCH-RETURN FROM TARGETSET"
FRMNOM1% = XX.FRAMENO

END IF
XOoC81l! = (XX.FIXX - XOFF!) / SF!
YOC81! = (XX.FIXY - YOFF!) / SF! 'TRANSFORM FIX
-==-=->ATION
XOCsS! = gINAL! * XOCS1l! + COSAL! * YOCS1!
———=> 'TO SYSTEM COORDTS
YOCS! = COSAL! * XOCS1l! - SINAL! * YOCS1!
CALL PICK(XOCS!, YOCS!, TOTSYM%, IDXTARG, DISTANCE
~===>1) 'PICK FROM POSEBLES
AAAA$ = "SEARCH-RETURN FROM PICK"
IF IDXTARG <> O THEN
XSOC1l! = ACX(IDXTARG) * SF!
YSOCl1l! = ACY (IDXTARG) * SF!
————D> ' TRANSFORM TGT POSITION
XS0C! = SINAL! * XSOCl! + COSAL! * YSOC1l! + X
===~>0FF 'TO SCREEN COORDTS
YSOC! = COSAL! * XSOCl1l! - SINAL! * YSOCl1l! + Y
~=~==>0FF

IF DISTANCE! > little THEN
IF TIEPEN (IDXTARG) <> 15 THEN
IDXTARG = 0: DISTANCE! = 100
ELSE

C-53

DX = XX.FIXX - X80C!: DY = XX.FIXY
-===>- ¥SOC!
IF DX < -taglit OR DX > taglit OR D
---=>Y < -taglit OR DY > taglit THEN
IDXTARG = O: DISTANCE! = 100
END IF
END IF
END IF

END IF

IF IDXTARG = O THEN

XX.SPEED = "0": XX.AIDON = "O"

XX.HEADING = " ": XX,COUNTDOWN = O

IF XX.FIXX >= xlistlm AND XX.FIXY >= xlistbm THEN

ELSE

XX.DISTANCE = SF! * little

XX.TGTTYPEC = "LIST": XX.TGTTYPEN = 56
XX.ZONE = "4": XX.TGTID = "LST"

XX.TGTX = xlistlm 'TO SCREEN COORDTS
XX.TGTY = xlistbm

DISFRMFIN = XOCS! - runoff!
SELECT CASE DISFRMFIN
CASE (-dw - little) TO (-dw + little) 'S0U
—-==>TH DOWNWIND
XX.DISTANCE = SF! * ABS (DISFRMFIN + dw)
XX.TGTTYPEC = "LINE": XX.TGTTYPEN = 53
XX.ZONE = "3": XX.TGTID = "SDW"
Xsocl! = (-dw + runoff) * SF!
YSOCl! = YOCS! * SF!
————D ' TRANSFORM TGT POSITION
XX.TGTX = SINAL! * XSOCl1l! + COSAL! * YSO
--—-=>C1! + XOFF tTO SCREEN COORDTS
XX.TGTY = COSAL! * XSOCl1l! - SINAL! * ¥SO
-=—=>Clt' + YOFF
CASE -little TO little 'FINAL

IF YOCS! >= omx - little AND YOCS! <= omx + 1
-—=->ittle THEN
XX.DISTANCE = SF! * ABS (DISFRMFIN + dw)

--—=> 'OUTER MARKER
XX.TGTTYPEC = "OMRK": XX.TGTTYPEN = 50
XX.ZONE = "1": XX.TGTID = "OMK"

XSOoC1l! = runoff! * SF!
Ysocl! = omx * SF!

———D ' TRANSFORM TGT POSITION
XX.TGTX = SINAL! * XSOCl! + COSAL! * YSO

———=>C1l! + XOFF ''TO SCREEN COORDTS

XX.TGTY = COSAL! * XSOC1! - SINAL! * YSO
~===>C1l! + YOFF
T™P1 = (XX.FIXX - XX.TGTX) ~ 2: ™P2 = (
———=>XX.FIXY - XX.TGTY) * 2
XX.DISTANCE = SQR(TMPl + T™P2)
ELSE ' final
XX.DISTANCE = SF! * ABS(DISFRMFIN)
XX.TGTTYPEC = "LINE": XX.TGTTYPEN = 51

XX.ZONE = "1": XX.TGTID = "FNL"

Xxsoclt! = runoff * SF!

Y80C1! = YOCS! * SF!
————2 ' TRANSFORM TGT POSITION
XX.TGTX = SINAL! + XSOCl! + COSAL! * YSO
-—-=->C1l! + XOFF 'TO SCREEN COORDTS
XX.TGTY = COSAL! * XSOCl! - SINAL! * YSO
-=—==->C1!' + YOFF

END IF

CASE (dw - little) TO (dw + little) 'NOR

~—--=>TH DOWN WIND

XX.DISTANCE = SF! * ABS(DISFRMFIN - dw)
XX.TGTTYPEC = "LINE": XX.TGTTYPEN = 52
XX.ZONE = "3": XX.TGTID = "NDW"
X80C1l! = (dw + runoff) * SF!
Ysocl! = Yocs! * SF!

————> ' TRANSFORM TGT POSITION
XX.TGTX = SINAL! * XSOC1l! + COSAL! * YSO

--=-~>C1l! + XOFF 'TO SCREEN COORDTS
XX.TGTY = COSAL! * XSOCl1l! - SINAL! * YSO
--=-=>C1l! + YOFF
CASE ELSE
END SELECT
END IF
END IF

IF IDXTARG <> O THEN

XX.DISTANCE= SF! * DISTANCE!: XX.TGTX = Xsoc!
XX.TGTY = YSOC!
IF TIEPEN (IDXTARG) <> 55 THEN

XX .TGTID= RIGHTS$ (STR$ (ACID (IDXTARG)), 3)
ELSE

XX.TGTID = STATID (ACID (IDXTARG))
END IF
XX.TGTTYPEC = TIEPEC (IDXTARG) : XX.TGTTYPEN =

~=—-=>TIEPEN (IDXTARG)

XX.ZONE = RIGHTS$ (STRS (ZONE (IDXTARG)), 1) + RI

~-—->GHTS$ (STR$ (ROUTE (IDXTARG)) , 1) 'SET ZONE etc. here

XX.AIDON = AIDON (IDXTARG): XX.SPEED = SPEEDON

—-—=>(IDXTARG)
XX.HEADING = HEAD (IDXTARG) : XX.COUNTDOWN = CO
~——=>UNTDN (IDXTARG)
END IF
ELSE
XX.SPEED = "0": XX.AIDON = "O"
XX.HEADING = " w. ¥X.COUNTDOWN = O
END IF

CALL PUTXX(7)

LoOoP

IDUM = 0: IF LOF(7) >= LOF(6) THEN IDUM = 1

CLOSE 3, 4,

6, 17

'IF IDUM = 1 THEN KILL FILEMRGS$: NAME FILEDUM$ AS FILEMRGS

END IF

C-55

--

END SUB 'SEARCH 'DUMMYPAGES ?r?;PAGE;EXIT;

SUB TARGETSET (FRAMENO%, TOTSYM%, NODICE%)

rHANARRERR N
'PUXPOB@®. ettt s e \ Sets up an array of targets (actually s
-=--=->everal
' \ arrays are used) which will be compared to the
! \ lookpoint to determine what the subject is looking
! \ at. This includes: aircraft, tags, aids, static
! \ targets and lines. Aids and tags are assigned
! \ to the same zone as their corresponding aircraft.
' \ For each aid turned on, the "aidon" flag is set
! \ for the corresponding aircraft and tag. If a
! \ speed advisory is encountered, then the "speed"
! \ flag is set for the corresponding aircraft and tag.
'Parameters............. \ input- (FRAMENO%),6 output-(TOTSYM%, NODI
--—=->CE%)
‘Other input data....... \ IAID
'Input files............ \ .IDX AS #4, .ACP AS #3
'‘output files........... \
'Other output data...... \ ACID(),ACX() ,ACY() ,ROUTE (), ZONE() ,TIEP
---->EC () , TIEPEN()
! \ dicehead% () ,dicetime%()
‘Function calls......... \
'Subroutine calls....... \
'‘Comments............... \ Assumes .IDX has been opened as #4 and
---=>.ACP has been
' \ opened as #3.
THANNRERNNN

SHARED ACID() AS INTEGER

SHARED ACX() A8 SINGLE

SHARED ACY () AS SINGLE

SHARED AIDON() AS STRING * 1
SHARED COUNTDN() A8 INTEGER

SHARED HEAD() AS STRING * 3

SHARED ROUTE() AS INTEGER

SHARED SPEEDON() AS STRING * 1
SHARED TIEPEC() AS STRING * 4
SHARED TIEPEN() AS INTEGER

SHARED ZONE() AS INTEGER

SHARED dicehead$ ()

SHARED dicetime% ()

SHARED IAID AS INTEGER

SHARED STATXS (), STATYS() AS SINGLE
SHARED STATID() AS STRING * 3

DIM GRX(1 TO 4), GRY(1l TO 4) AS SINGLE
JJ = (FRAMENOS ~ 1) * 10 + 1

IF JJ > LOF(4) - 9 THEN JJ = LOF(4) - 9

SEEK #4, JJ 'BYTE OFFSET FOR INDEX FILE
INPUT #4, NBYTE&

SEEK #3, NBYTE& 'BYTE OFFSET FOR TIME HISTORY

Cc-86

INPUT #3, NOAC%, T%
FOR J = 1 TO NOACS%
xwm#maumm,mmm,mnm,mmJ+mmu,Mﬂw+u
_.-->OAC%), ROUTE(J), ZONE(J)'INPUT AIRCRAFT
ROUTE (J + NOAC%) = ROUTE(J): ZONE(J + NOAC%) = ZONE(J)
TIEPEC(J) = "A/C": TIEPEC(J + NOACH) = WTAG": ACID(J + NOACH
——==>) = ACID(J)
TIEPEN(J) = 10: TIEPEN(J + NOACY) = 15
AIDON(J) = "O": AIDON(J + NOAC%H) = no"
SPEEDON (J) = "O": SPEEDON (J + NOAC%) = "O"

HEAD(J) = " w: HEAD(J + NOAC%) = " "
COUNTDN(J) = O: COUNTDN (J + NOACS%) = o}
NEXT J

K = 2 * NOACS
INPUT #3, NOTURNS%, NOSLOTS%, NODICES
NOSYM% = NOTURNS% + NOSLOTS% + NODICES%
' PRINT NOACS; NOTURNS%; NOSLOTS%; NODICE%; T%; FRAMENO%; J;
1IF NOSYM$ <> O THEN
SELECT CASE IAID

CASE 31, 32 'GRAPHIC TURN MARKER
FOR JJ = 1 TO NOTURNS$
K=K+ 1

INPUT #3, ACID(K), ACX(K), ACY(K), GRX(1), GR
——-=>Y (1), GRX(2), GRY(2), GRX(3), GRY (3) ' INPUT
LLL = HITS (ACID(X), ACID() , NOACH) 'Find cor
---->responding A/C

IF LLL <> O THEN
AIDON (LLL) = "1": AIDON (LLL + NOACS%) = "1" 'S
---->at A/C & Tag AIDON
ZONE (K) = ZONE (LLL) : ROUTE (K) = ROUTE(LLL): A

---->IDON(K) = "1"
SPEEDON (K) = "O"

IF GRX(1l) = 99.99 THEN ' SPLAT
TIEPEC (K) = "SPLT": TIEPEN(K) = 36
SPEEDON (K) = "1"

SPEEDON (LLL) = "1": SPEEDON (LLL + N
"""">0AC%) = nl"

ELSE
TIEPEC(K) = wTRN1": TIEPEC(K + 1) = "TRN
————D2"
TIEPEC(K + 2) = "TRN3": TIEPEC(K + 3) =
———=>"TRN4"

TIEPEN (K) = 32: TIEPEN(K + 1) = 33
TIEPEN(K + 2) = 34: TIEPEN(K + 3) = 35
FORL =1 TO 3
ACID(L + K) = ACID(K) : ACX(L + K) =
-—-=> GRX(L)
ACY(L + K) = GRY (L) : AIDON(L + K) =
———— "1"
ZONE (L + K) = ZONE (LLL) : ROUTE(L +
-—==>K) = ROUTE (LLL)
SPEEDON(L + K) = won
NEXT L

Cc-57

K=K+ 3

END IF
END IF
NEXT JJ
CASE 41, 42 ' SLOT MARKER-BUBBLE

FOR JJ = 1 TO NOSLOTS%

K=K+ 1

TIEPEC(K) = "SLOT"

TIEPEN(K) = 20

ACX(K) = runoff! ' -.34 See page 1

INPUT #3, ACID(K) , ACY(K) 'INPUT SYMBOLS

LLL = HIT%(ACID(K), ACID() , NOAC%) 'Find cor

---->responding A/C

IF LLL <> 0 THEN

AIDON (LLL) = tn1n; AIDON (LLL + NOAC%) = min 1g
---->et A/C & Tag AIDON

ZONE (K) = ZONE (LLL) : ROUTE (K) = ROUTE(LLL): A

-=--=>IDON(K) = ninw
SPEEDON(K) = "Q"
END IF
NEXT JJ
CASE 21, 22 'DICE
FOR JJ = 1 TO NODICE%
LINE INPUT #3, DICELINE$ ' INPUT SYMBOLS

ACID(K) = VAL(LEFT$ (DICELINE$, 5))
LLL = HIT%(ACID(K), ACID(), NOAC%) 'Find cor
---->responding A/C
IF LLL <> O THEN
COUNTDN (LLL) = VAL (MID$ (DICELINE$, 12, 5))
—_———> ' COUNTDOWN
COUNTDN (LLL + NOAC%) = COUNTDN (LLL)
HEAD (LLL) = MID$ (DICELINE$, 8, 3) 'HEADING
HEAD (LLL + NOAC%) = HEAD(LLL)
AIDON(LLL) = "1": AIDON(LLL + NOACS%) = nynw
IF UCASES$ (MID$ (DICELINE$, 7, 1)) = "S" THEN
PRINT FRAMENO%; DICELINES; HEAD (LLL)
SPEEDON (LLL) = "1": SPEEDON (LLL + NOACH%)

———=> = nugyn
END IF
END IF
NEXT JJ
END SELECT
END IF

css

IF NOSTATS <> 0 THEN

FOR JJ = 1 TO NOSTATS
K=K+ 1
TIEPEC(K) = "gTAT"
TIEPEN(K) = 55
ACID(K) = J0 'INPUT SYMBOLS
ACX(K) = STATXS (JJ): ACY (K) = STATYS (JJ)
ZONE(K) = 4: ROUTE(K) = O: AIDON(K) = "Q"
SPEEDON(K) = "Q"
HEAD(K) = n ": COUNTDN(K) = 0

NEXT JJ
END IF
TOTSYMS = K: 'PRINT K

]
END SUB ' TARGETSET 'DUMMYPAGE$?x?;PAGE; EXIT;

C-59

-

'DEFINT I-N

START:

TYPE DDAT
TT AS INTEGER
XX AS INTEGER
YY AS INTEGER
PD AS INTEGER
FT AS INTEGER

END TYPE

DIM X1 AS DDAT

DIM X2 AS DDAT

DIM X3 AS DDAT

DIST = 102.4: DIST2 = DIST * DIST 'CPI=204.8

AAS = "i**t**t**it*tti*iit*ttti**itt*ii***tt****ﬁ**i***t**t****i*
AB§ = " FILTER1.BAS " + DATES + " " + TIMES$

ACS$ = v .DT1 I8 A COMBINATION OF .SCN AND .DAT. This program us

-—=->as 4 filters"
AD$ = " proposed by Randy Harris in Oct,91 to reduce the number
---->of records"

AE$ = " on the file. Input-.DT1, Output-.DT3"

INPUT " Enter full file descriptor for index file ", INDEX$

OPEN INDEX$ FOR INPUT AS #3 'List of files for one subject
LGTOTS = LEFTS$ (INDEXS, LEN (INDEX§) - 8) + "1LOG . TOT"

OPEN LGTOT$ FOR OUTPUT AS #4 'Concatenated log file
DO WHILE NOT EOF(3) ' Loop through one subject's files #3

PRINT : PRINT

INPUT #3, FLES

IF FLES$ = """ THEN END

NN$ = FLE$ + ".DT2"

N1§ = FLES + ".DT1"

LGS = FLE$ + ".LOG"

OPEN LG$ FOR APPEND AS #5
PRINT NN§$

T8 = 0

ON ERROR GOTO NOSUCHFILE
OPEN N1$ FOR INPUT AS #1 1can find .DT1 file?? #1
ON ERROR GOTO 0

IF T% = 1 THEN GOTO START

CLOSE 1

OPEN "R", #1, N1§, 10 ' Open .DT1 in random mode

LENFLE% = LOF(1) / 10

DN1 = LENFLE% ' Floating peoint

OPEN NN§ FOR RANDOM AS #8 LEN = 10

IF LOF(8) <> O THEN STOP ' Open DT2 in random mode #8

PRINT #4, AA$: PRINT #4, AB$, FLE§: PRINT #4,

PRINT #4, AC$: PRINT #4, AD$: PRINT #4, AE$ ' Preamble #4

PRINT #5, AA$: PRINT #5, AB§, FLE$: PRINT #5,

PRINT#5, AC$: PRINT #5, AD§: PRINT #5, AES ' Preamble #5

FIL1 = O: FIL2 = O: FIL3 = O: FIL4 = 0

TL = O: T2 = 0: T3 = 0: T4 = O: T5S = 0: T6 = O ' Initiali
~---->ze accumulators

GET #1, , X1 '#1 & #8 OPEN, FILTER #1 TO #8

Cc-80

GET #1, , X2 ' DT1 TO DT2

GET #1, , X3

T1 = T1 + X1.FT + X2.FT + X3.FT

RECREDY = 3 * NOR read from .DT1

DO WHILE RECREDS® <= 3000 ' FILTER #1 INTO #
RECLFT%= LENFLE% - RECRED% ' Remaining records

X1IT = X1.XX <> 0 OR X1.YY <> 0 OR X1.PD > 10
X2IT% = X2.XX <> 0 OR X2.YY <> 0 OR X2.PD > 10
X3ITS = X3.XX <> 0 OR X3.YY <> 0 OR X3.PD > 10
IF X2.FT = 1 AND X2IT% AND (NOT X3ITS) AND X1IT$ THEN 'REMOV

--—-=>E RECORD
X1.FT = X1.FT + 1
PUT #8, , X1
X1 = X3
FILL = FIL1 + 1 ' Increment NOR accumulator
IF RECLFT®% > 1 THEN '\ 2 or more .DT1 records left

GET #1, , X2

GET #1, , X3

Tl= Tl + X2.FT + X3.FT ' Increment time, filter 1
RECRED%Y = RECRED% + 2

ELSE
PUT #8, , X1 ' 1 or 0 .DT1 records left
IF RECLFT = 1 THEN
GET #1, , X1: PUT #8, , X1
Tl = Tl + X1.FT
RECREDS = RECREDS% + 1
END IF
EXIT DO

END IF

ELSE ' No filter 1

pUT #8, , X1

X1 = X2: X2 = X3

IF RECLFT% > O THEN ' Not EOF .DT1
GET #1, , X3
T1 = T1 + X3.FT
RECRED% = RECRED% + 1

ELSE ' EOF .DT1
PUT #8, , X1: PUT #8, , X2
EXIT DO
END IF
END IF
LOOP
CLOSE 1

NN3$ = FLE§ + ".DT3"

OPEN NN3$ FOR RANDOM AS #9 LEN = 10 ' 48 AND #9 OPEN, FIL
---=>TER #8 INTO #9

LOF9 = LOF(9): LOF8 = LOF(8) / 10 ' DT2 TO DT3

1F LOF9 <> O THEN STOP

SEEK #8, 1

GET #8, , X1

GET #8, , X2

C-61

GET #8, , X3

RECREDY = 3

DO

RECLFTS = LOF8 - RECREDS

X2ITS = X2.XX <> O OR X2.YY <> 0 OR X2.PD > 10

IF (X2.FT > 12) OR (X2ITS AND X2.FT > 3) THEN GOTO FILTER4
~==--=>' B too long

X1IT% = X1.XX <> 0 OR X1.YY <> 0 OR X1.PD > 10

X3ITY = X3.XX <> 0 OR X3.YY <> 0 OR X3.PD > 10

IF NOT X1ITS% OR NOT X3ITS THEN GOTO FILTERAd ' A or C no

-~=~=~>t in track

D13% = ((X1.XX - X3.XX) * 2 + (X1.YY - X3.YY) ~ 2) <= DIST2

IF NOT D13% THEN GOTO FILTER4 ' A to C distance too great

XX1 = X1.XX: YY1l = X1.YY: XX3 = X3.XX: PD1 = X1.PD' 3 INTO 1

YY3 = X3.YY: FT1 = X1.FT: FT3 = X3.FT: PD3 = X3.PD

X1.XX = ((XX1 * FT1) + (XX3 * FT3)) / (FT1 + PT3)

X1.YY = ((YY1l * FT1) + (YY3 * FT3)) / (FT1 + FT3)

X1.PD = ((PD1 * FT1) + (PD3 * FT3)) / (FT1 + FT3)

X1.FT = X1.FT + X3.FT

IF X2.FT < 4 THEN

X1.FT = X1.FT + X2.FT
ELSE
IF NOT X2IT% THEN T5 = TS5 + X2.FT

END IF

IF X2IT% THEN

FIL2 = FIL2 + 1

ELSE

FIL3 = FIL3 + 1

END IF

IF RECLFTS% > 1 THEN

GET #8, , X2: GET #8, , X3

RECREDY = RECREDS + 2

ELSE ' END OF FILE

IF X1.FT > 3 THEN ' Filterd A??
PUT #9, , X1: T2 = T2 + X1.FT

ELSE

FIL4 = FIL4 + 1:
T6 = T6 + X1.FT
END IF
IF RECLFT = 1 THEN
GET #8, , X1: RECRED% =~ RECRED% + 1
IF X1.FT > 3 THEN ' Filterd A??
PUT #9, , X1: T2 = T2 + X1.FT
ELSE
T6 = T6 + X1.FT: FIL4 = FIL4 + 1
END IF
END IF
EXIT DO
END IF
GOTO BOTTOM
FILTERd:
IF X1.FT > 3 THEN ' Filterd A??
PUT #9, , X1: T2 = T2 + X1.FT

Cc-82

ELSE
FIl4 = FIL4 + 1:
T6 = T6 + X1.FT

END IF
X1l = X2: X2 = X3
IF RECLFTS > 0 THEN ' Not EOF .DT2

GET #8, , X3
RECREDS% = RECRED% + 1

BOTTOM:

ELSE 'END OF FILE .DT2

IF X1.FT > 3 THEN ' Filterd A??
PUT #9, , X1: T2 = T2 + X1.FT

ELSE
T6 = T6 + X1.FT: FIL4 = FIL4 + 1

END IF

IFX2.FT > 3 THEN ' Filter4 B??
PUT #9, , X2: T2 = T2 + X2.FT

ELSE
T6 = T6 + X2.FT: FIL4 = FIL4 + 1

END IF

EXIT DO

END IF

LOOP

N2 = LOF(9) / 10

CLOSE 8, 9

N3 = FIL1: PN3 = 100 * N3 / DN1: N4 = FIL2 * 2: PN4 = 100 +
~--->N4 / DN1

NS = FIL3 * 2: PN5 = 100 * N5 / DN1: N6 = FIL4: PN6 = 100 *
---->N6 / DN1

PRINT : PRINT FILl1l, FIL2, FIL3, FIL4
PRINT #4,
PRINT #4, USING " Number of records .DT1 #####, .DT3 #####

-———> Percent Excised ### . .#%"; DN1; N2; 100 * (DNl -
---->N2) / DN1
PRINT #4, " Number of records excised for each of 4 filters

---=> as % of .DTI records "
PRINT #4, SPACES$ (11);
PRINT #4, USING " ##### ###_¥#3% "; N3; PN3; N4; PN4; N5; PN5;

--=-=> N6; PN6
T3 = 0: PT3 = 100 * T3 / Tl: PT4 = 100 * T4 / Tl
PTS = 100 * TS5 / Tl: PT6 = 100 * T6 / T1
PRINT #4,
PRINT #4, USING " TOTAL TIME .DT1 ######,6 .DT3 #ERBAR; T
-————>; T2
PRINT #4, " Time excised for each of 4 filters as % of .DTI

~-—==> total time "
PRINT #4, SPACES$ (11);

PRINT #4, USING " ##### ###_#% »; T3; PT3; T4; PT4; T5; PT5;
-===> T6; PT6
PRINT #4,
PRINT #4, USING " TOTAL TIME in saconds .DT1 ####, .DT3 ##
——==>## Percent Excised ###.#%"; T1 / 30; T2 / 30; 100

C-63

——==>* (T1 - T2) / T1

PRINT #4, " Time excised in seconds for each of 4 filters a
--==>8 % of .DTI total time "
PRINT #4, SPACE$(11);
PRINT #4, USING " #4844 488 8% v; T3 / 30; PT3; T4 / 30; PT4;
--=-=>T5 / 30; PTS; T6 / 30; PT6
PRINT #5,
PRINT #5, USING " Number of records .DT1 #####, .DT3 #¥#¥#
————> Percent Excised ###.#%"; DN1; N2; 100 * (DNl -~
---->N2) / DN1
PRINT #5, " Number of records excised for each of 4 filters
-=-—-> as & of .DTI records "
PRINT #5, SPACES$ (11);
PRINT #5, USING " ##### ##¥. #% "; N3; PN3; N4; PN4; N5; PN5;
----> N6; PN6
PRINT #5,
PRINT #5, USING " TOTAL TIME .DT1 ##8di#s, .DT3 ###%#8; T1
———=>; T2
PRINT #5, " Time excised for each of 4 filters as & of .DTI
--==> total time "
PRINT #5, SPACES (11);
PRINT #5, USING " ##### ###._#% »; T3; PT3; T4; PT4; T5; PT5;
--==> T6; PT6
PRINT #5,
PRINT #5, USING " TOTAL TIME in seconds .DT1 ####, .DT3 ##
——==>H# Percent Excised ###. #%"; T1 / 30; T2 / 30; 100
-—==>% (T1 - T2) / T1
PRINT #5, " Time excised in seconds for each of 4 filters a
——-~>8 % of .DTI total time "
PRINT #5, SPACES$ (11);
PRINT #5, USING " #### ### 4% "; T3 / 30; PT3; T4 / 30; PT4;
~===> T5 / 30; PTS; T6 / 30; PT6
CLOSE 5
LOOP
CLOSE 3, 4
END
NOSUCHFILE:
PRINT "Couldn't find input file "; FLE$
TS = 1

RESUME NEXT

Cc-84

DEFINT I-N
DECLARE SUB CRESDT1 ()
DECLARE SUB BI2 (BIPSN())
DECLARE SUB BI1l (BIP%())
DECLARE SUB FIN ()
DECLARE SUB FIXPOINTER ()
DECLARE SUB INIT (F$§, G$)
DECLARE FUNCTION LOG$ (8BS, AS)
DECLARE SUB YESORNO (A$, BS)
CONST nscanbuf = 400, nfixbuf = 5000
TYPE DT1
TIME AS INTEGER
XL A8 INTEGER
YL A8 INTEGER
PUP AS INTEGER
LENGTH A8 INTEGER
END TYPE
DIM XDT1 AS DT1
DIM BI1P(1 TO 7) AS INTEGER'Buffered Input 1
DIM BI2P(1 TO 7) AS INTEGER'Buffered Input 2
DIM FILEACPS, FILEDATS, FILEDUMS, FILEIDXS, FILEDT1S, FILESCNS$
DIM FILEACPS&, FILEDATS, FILEDUMS, FILEIDXS%, FILEDT1%, FILESCN%
DIM FIXPNTER(26000) A8 INTEGER
DIM FIXLENGTH(1 TO nfixbuf) AS INTEGER
DIM INTRACK(1 TO nfixbuf) AS INTEGER
DIM NUMINTRACK, NUMOUTTRACK AS INTEGER
DIM OCSCAN(1 TO nscanbuf, 1 TO 4) AS INTEGER
DIM PUPDIAM(1 TO nfixbuf) AS INTEGER
DIM SHARED NUMFIXS%, NUMSCANS, NOSTATS, NUMMRG$ TN Ak *COMMON * k& & &
DIM SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
DIM XLOOK(1l TO nfixbuf) AS INTEGER
DIM YLOOK(1 TO nfixbuf) AS INTEGER
! *% FILE NUMBERS **)

' #1 8CN #2 DAT #3 INDEX
! #4 #5 #6 DT1

' #7 #8 #9

t

NOSTATS = 10
SB§ = " (MAIN "
INPUT " Enter full file descriptor for index file ", INDEX$
OPEN INDEX$ FOR INPUT AS #3 ' @.g. 0:KISER\FLEINDX1
DO WHILE NOT EOF(3)
INPUT #3, FILENAME$
FILENAME1S = RIGHTS (UCASE$ (FILENAMES), 8)
CALL INIT(FILENAMES, FILENAME1S)
CALL FIXPOINTER
PRINT LOGS (SB$, " FINISHED FIXPOINTER")

CALL CRESDT1
CALL FIN 'Close FILES

Cc-65

------------------- L I I R I I R I I I I I I R S I S A I A S

END ' MAIN PROGRAM 'DUMMYPAGES$?r?;PAGE; EXIT;

SUB BI1 (BIP%())

THERNNEREN Y

'PUXPOB®.t rvvennenne \ Reads FILESCN$ using circular buffer OC
-===>8SCAN ()

' \ and manages pointers, BIP%().

'Parameters............. \ BIP%() Circular buffer pointers

'‘Other input data....... \

'Input files............ \ FILESCN§ = .SCN

'Output files........... \

‘Other output data...... \ OCSCAN({)

'Function calls......... \

'Subroutine calls....... \

'Comments............... \

THENERNRN N

SHARED OCSCAN() AS INTEGER
SHARED FILEACPS%, FILEDAT%, FILEDUMS, FILEIDX%, FILEDT1%, FILESCNS%
'SIZE,FIRST,LAST, TRIG,NREC,NEOF, P1
NORIB = BIP%(3) - BIP%(2) 'If buffer low AND EOF=.F.
IF NORIB < 0 THEN NORIB = NORIB + BIP%(1l)
IF NORIB < BIP%(4) AND BIP%(6) = 0 THEN
FORI = 1 TO BIP&(5) '‘Load buffer
GET FILESCN%, , OCSCAN(BIP%(3), 1)
BIP%(3) = BIP%(3) + 1
IF BIPS%(3) > BIP%(1l) THEN BIP%(3) = 1
IF EOF(FILESCN%) THEN
BIP%(6) = BIP&(3) 'Points at last
EXIT FOR
END IF
NEXT I
END IF
JDUM = BIPS(2)
BIPA (2) = BIPS%(2) + 1: IF BIP%(2) > BIP%(1l) THEN BIP%(2) = 1 'Inc
---->rement first
IF BIP%(2) = BIP%(6) THEN 'READ BEYOND DATA
BIP%(2) = JDUM
PRINT "#*#*#%% ERROR READING EOF (FILESCNS%) IN BIl #*#%#&#an
END IF

--

--

END SUB ' BI1 'DUMMYPAGE$?r?;PAGE;EXIT;

SUB BI2 (BIP%())

THERNARARNAS

'"PUYPOS®. . . . o v v e venarenn \Read the fixation data into circular buf
~~-->fers and\

! \compute a few preliminary statistics.

'Parameters. \BIP% () Circular buffer pointers

'Other input data....... \

‘Input files............ \FILEDAT% =.DAT

c-88

‘output files........... \
'Other output data...... \BIP% (), XLOOK(),YIOOK(),PUPDIAM(),FIXLEN
———=>GTH() , INTRACK() Circular buffers

' \SUMFIXLINGTH, SUMINTRACK, SUMOUTTRACK, NUMINTRACK, NUMOUTTRACK
'‘Function ocalls....... e e\

tgubroutine calls....... \
"COmMMENts. .c..cocaveooss \
T HERAANERES

SHARED INTRACK() AS INTEGER

SHARED FIXLENGTH() AS INTEGER

SHARED XLOOK() AS INTEGER

SHARED YLOOK() AS INTEGER

SHARED PUPDIAM() AS INTEGER

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG

SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER

SHARED FILEACPS, FILEDATS, FILEDUMSY, FILEIDX%, FILEDT1%, FILESCN%
'SIZI,FIRST,LAST,TRIG,NREC,NEOF,Pl

NORIB = BIP%(3) - BIP%(2) 1If buffer low AND EOF=.F.

IF NORIB < O THEN NORIB = NORIB + BIP%(1)

IF NORIB < BIP%(4) AND NOT EOF (FILEDATS) THEN

FOR I = 1 TO BIP%(5) '1.oad buffer
GET FILEDATS, , XLOOK (BIP&(3)): GET FILEDATS, , YLOOK (BIP% (3
—-——=>)) ‘read record
IF NOT EOF (FILEDATS) THEN

GET FILEDATS, , PUPDIAM(BIP%(3)): GET FILEDATS, , FIXLE
--—->NGTH (BIP%(3))

SUMFIXLENGTH = SUMFIXLENGTH + FIXLENGTH(BIP%(S))
————D> ttotal of fixations

INTRACK (BIP%(3)) = 1
IF XLOOK(BIP%(3)) = O AND YLOOK (BIP%(3)) = O AND PUPDIA
———->M(BIP%(3)) < 11 THEN ' out of track
INTRACK (BIP%(3)) = O
SUMOUTTRACK = SUMOUTTRACK + FIXLENGTH (BIP%(3)) 'tot
—-—-->al out of track

NUMOUTTRACK = NUMOUTTRACK + 1

ELSE ' in track
SUMINTRACK = SUMINTRACK + FIXLENGTH(BIP%(3))
————D 1total intrack
NUMINTRACK = NUMINTRACK + 1
END IF

BIP%(3) = BIP%(3) + 1
1IF BIP%(3) > BIP%(1) THEN BIP%(3) =1
ELSE
EXIT FOR
END IF
NEXT I

END IF
BIP% (2) = BIP%(2) + 1: IF BIP%(2) > BIP% (1) THEN BIP%(2) = 1'Incr
-—-—->ement first

END SUB 'BI2 'DUMMYPAGES$ 2r?; PAGE ;EXIT;

c-67

SUB CRESDT1

THERRNRNN

'Purpose.......... Cheena \ Initial creation of the .MRG file using
-===> data from

! \ .DAT and time history pointer array from subroutine

! \ FIXPOINTER

'Parameters............. \ none

'Other input data....... \ NUMMRGS, PUPDIAM, FIXPNTER, XLOOK, CPI!
~--=-=>, YLOOK

D e e ettt \ FIXLENGTH,

'Input files............ \ FILEDAT$= .DAT

'Output files........... \ FILEDT1$= .DT1

'Other output data...... \ none

'Function calls......... \ LOGS$

'Subroutine calls....... \ BI2

'Comments............... \ Target type is set to 0, "UNK" for in-t

---=->racks or
! \ 80, "OUT" for out-tracks. Other fields are initialized
' \ to unrealistic constants.
REIZIZTETITT
SHARED BI2P() AS INTEGER 'BufferedInput 2
SHARED FILEACPS, FILEDAT$, FILEDUM$, FILEIDXS, FILEDT1S$, FILESCNS
SHARED FILEACPS, FILEDATS, FILEDUMS, FILEIDX%, FILEDT1%, FILESCN%
SHARED FIXLENGTH() AS INTEGER
SHARED FIXPNTER() AS INTEGER
SHARED XLOOK() A8 INTEGER
SHARED YLOOK() AS INTEGER
SHARED PUPDIAM() AS INTEGER
SHARED XDT1 AS DT1
8B$ = " (CREBDT1 *
CLOSBE FILEDT1S
OPEN FILEDT1$ FOR RANDOM AS #FILEDT1% LEN = 10' FIXATION, TIME HI
~===->8STORY MERGE
NUMMRGEL = LOF(FILEDT1S) ‘can the file be found
IF NUMMRGE& <> 0 THEN
PRINT LOG$ (SB§, FILEDT1$ + " is not empty and you are trying
---=-> to open it for output")
PRINTLOGS (8B§, "NUMFIXS$ = ") ; NUMFIXS%; "NUMMRGS = "; NUMMRGE
A$ = "Do you want to close " + FILEDT1$ + " and exit CRESDT1
-===> subroutine"
CALL YESORNO(AS$, BS)
IF B§ = "Y" THEN CLOSE FILEDT1%:-EXIT SUB

END IF

' R T T T T
SEEK #FILEDATS, 1 'REWIND FILE & RESET BUFFER !
I = nfixbuf: BI2P(1l) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) = .2

————>% T
BI2P(5) = .7 * I: BI2P(6) = 0: BI2P(7) = 1

FOR I = 1 TO NUMMRG
CALL BI2(BI2P())
II = BI2P(2)

c-88

XDT1.TIME = FIXPNTER(I): XDT1.XL = XLOOK(II): XDT1.YL = YLOO
=-==>K(II)
XDT1.PUP = PUPDIAM(II) : XDT1.LENGTH = FIXLENGTH(II)
PUT .FILIDTI%, I, XDT1
NEXT I
'CLOSE FILEDT1%
t

--

END SUB 'CRESDT1

SUB FIN

HERRNNB Ny

'Purpose................ \ Close all files, scale and ocutput a few

==~=> statistics

'Parameters............. \

'‘Other input data....... \ SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK,
—-—->NUMINTRACK, NUMOUTTRACK

'Input files............ \

'Output files........... \

'Other output data.... .. \

'Function calls......... \ LoG$

'Subroutine calls....... \

'Comments............... \

THNNNE N

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
SB§ = " (FIN »
IF NUMINTRACK <> 0 AND NUMOUTTRACK <> 0 THEN
PRINT LOGS$ (8B$, "NUMBER OF IN TRACK FIXATIONS= ") ; NUMINTRAC

————=>K; ' totals for .txt file
PRINT LOGS(SB$, "NUMBER OF OUT TRACK FIXATIONS=") ; NUMOUTTRA
~===>CK

PRINT USING "¢ ###### OR #444._ 44 SECONDS"; LOGS (SB$, "TOTAL
~==->TIME IN TRACK I8 "); SUMINTRACK; SUMINTRACK / 30
PRINT USING "¢ ###4## OR #4¥4. ¥4 SEcONDS"; LOG$ (SB$, "TOTAL
==-->TIME OUT TRACK IS ") ; SUMOUTTRACK; SUMOUTTRACK / 30
PRINT USING "& #####4 OR #4944 _## SEcONDS"; LOGS (SB$, "TOTAL
===~->FIXATION TIME IS ") ; SUMFIXLENGTH; SUMFIXLENGTH / 30
PRINT USING "& ##4#.## OR ##.4##% SECONDS"; LOG$ (SB$, "AVERAGE
====>IN TRACK FIXATION IS ") ; SUMINTRACK / NUMINTRACK; SUMINTRA
—===>CK / NUMINTRACK / 30
PRINT USING "& ###.## OR ##.4# SEcoNDS"; LOG$ (SB$, "AVERAGE
====>0UT TRACK FIXATION IS ") ; SUMOUTTRACK / NUMOUTTRACK; SUMOUT
~===>TRACK / NUMOUTTRACK / 30
END IF
cumz1,2,4,5,6,7,9

t

--

END SUB ' FIN ' DUMMYPAGE $?r?;PAGE;EXIT;

SUB FIXPOINTER
c-89

XY 1IN

IPUrPOS®. . s sttt Tttt \ This routine assigns & time history rec
———->ord #, (I), to

! \ each fixation. The contents of FIXPNTER(N) indicates

' \ which time record the N'th fixation is associated

! \ with and therefore where oné should seek the target

! \ of the fixation.

'pParameters. ...t \

1other input data......- \ OCSCAN(), BI1P(), PAGES, FONTS

1Input files.......-:-c- \ FILESCN$ thru BI1l only.

routput files.......:-<* \ #9 a print out of .ACP record #'s for e
-—-->ach fixation

'other output data....-- \ FIXPNTER(), NUMMRGHY

'Function calls.......-- \ LOG$,

1gubroutine calls......: \ BIl

Comments. ...seorre " \ The first scan # is recorded at time =

---->4 seconds.
' \ Therefore if the third scan # is 3 and the 4'th
' \ scan ¥ is 10, then .DAT records 5 through 11 are
' \ associated with targets recorded at t=12 seconds
! \ or record 4 on the .ACP file since the first .ACP
! \ record corresponds to t=0.
]

! \ The first entry on the time history file is time=0.

! \ The second entry is time=4 seconds.

' \ The first scan toggle precedes slightly this 2'nd
! \ entry i.e. ~4 seconds into the run. Thus spake Buddy
! \ after careful consideration and investigation on 4/3/91.

1

\ If the 1'st scan ¥ is k, then gixations <= (k+1) are
\ pointed at time history frame 1, i.e. time=0.

]

'

'

' \ The last time history frame is not used.
' \ NUMMRG%<= NUMFIX%. A fevw fixations (<20) during
! \ the last partial 4 second frame are dropped.
t

\

\ If the scan # does not increase, then drop through
! \ the loop until it does.
YT LI
SHARED FIXPNTER() AS INTEGER
SHARED FILEACPS, FILEDATS, FILEDUMS, FILEIDX%, FILEDT1S, FILESCNS
SEARED BI1P() AS INTEGER 'Buffered Inputl
SRARED OCSCAN() AS INTEGER
SHARED PAGES, FONT$
SRS = "(FIXPOINTER v
SEEK #FILESCNS, 1 'REWIND FILE & RESET BUFFER '

'SIZE,FIRST,LAST,TRIG,NREC,NEOF,Pl :
I = nscanbuf: BI1P(1) = I: BI1P(2) = O: BI1P(3) = 1: BI1P(4) = .2
———> % 1

BI1P(5) = -7 « I: BI1P(6) = 0: BI1P(7) = i1'nscanbuf is a constant

FORI = 1 TO NUMSCANS 1 T is the record# on the ACP file
CALL BI1l(BI1P()) ' NUMSCAN% defined in INIT

c-70

SCN% = OCSCAN (BIl1P(2), 1) 'scni= fixation# from SCN file
IF SCN§ >= 1 AND SCN& <= NUMFIX% THEN 'out-of -range error
IF SCNS > SCNPREVS THEN 'If equal loop otherwise error
FOR J = SCNPREVS + 2 TO SCN% + 1
IF J <= NUMFIX$% THEN
FIXPNTER(J) = 1T
JTEMP = J
END IF
NEXT J
SCNPREVS = SCN%
ELSE
IF SCN% < SCNPREVS THEN 'not monotonic
PRINT LOGS$ (SB$, "#+*s+sds+ ERROR SCAN POINTER
--—-->DECREASING "); I, SCN%
END IF
END IF
ELSE
PRINT LOGS (SB$, "FIXATION POINTER OUT OF RANGE "); I;
---=>BI1P(2)
END IF
NEXT I
NUMMRGS = JTEMP ' NUMMRGS% DEFINED
PRINT LOGS (SB$, "NUMBER OF MERGE FILE FIXATIONS IS "); NUMMRGY

! SRR IR NS IR IR IR IR S AR ISR N AR N d IRIEETEE TR

SUB INIT (FILENAMES, FILENAME1 $)

THRRBRERENN

'PUrPOS®. e ot v oo \ Initialize parameters on both circular

---=>buffers

' \ Initialize sums to zero. Let user choose partic-

' \ ular run for analysis. Determine aid type for

! \ subsequent branching. Open FILESCN$, FILEDATS,

! \ FILEACP$ and store their lengths.

'Parameters....... ... \ none

'Other input data....... \

‘Input files............ \ FILESCNS§, FILEDATS, FILEACPS

'Output files........... \

'Other output data...... \ File names & unit #'s. Initialized vari
--==>ables, sums

! \ and pointers and the branch variable IAID

'function calls......... \ LOG$

'gubroutine calls....... \ none

'‘Comments........cc00n \ I don't think I'm using this BOP stuff.

THERENRRRN Y

SHARED BI1P() AS INTEGER 'BufferedInput 1

SHARED BI2P() AS INTEGER 'BufferedInput 2

SHARED FILEACPS, FILEDATS, FILEDUMS, FILEIDXS, FILEDT1S, FILESCNS$

SHARED FILEACPS%, FILEDATS, FILEDUMS, FILEIDXS, FILEDT1%, FILESCN%

Cc-11

SHARED IAID AS INTEGER

SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG

SB§ = " (INIT "

'SIZE,FIRST,LAST, TRIG,NREC, NEOF, P1

I = nscanbuf: BI1P(l) = I: BI1P(2) = O0: BI1P(3) = 1: BI1P(4) = .2
————=> * I

BI1P(5) = .7 * I: BI1P(6) = 0: BI1P(7) = 1

'FOR L = 1 TO 7: print BI1P(L): NEXT L

I = nfixbuf: BI2P(1l) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) = .2
————>% T

BI2P(5) = .7 % I: BI2P(6) = 0: BI2P(7) = 1

NUMFIXS% = O0: NUMSCANS = O

SUMFIXLENGTH = 0: SUMINTRACK = 0: SUMOUTTRACK = 0

NUMINTRACK = 0: NUMOUTTRACK = 0

IF FILENAMES = "" THEN PRINT : PRINT : PRINT : STOP
FILENAME1$ = RIGHTS$ (UCASES (FILENAMES), 8)
SELECT CASE MIDS$ (FILENAME1$, 5, 1)
CASE "M"
IAID = 1
CASE "D"
IAID = 2
CASE "G"
IAID = 3
CASE "8"
IAID = 4
CASE ELSE
IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOGS$ (SB$, "CASE FROM FILENAME MUST BE MN,D
---->C,GR or SL"): PRINT : STOP
IAID1 = VAL(MID$ (FILENAME1S$, 7, 1))
IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOGS$ (SB$, "CASE FROM FILE
---->NAME MUST BE 170 OR 210"): PRINT : STOP
IAID = IAID * 10 + IAID1: PRINT IAID
FILEDAT$ = FILENAMES + ".DAT": FILEDATS% 2 'append extension
FILEDT1$ = FILENAME$ + ".DT1": FILEDT1% = 6 .
FILESCNS = FILENAMES + ".SCN": FILESCN% = 1 .
' COMMENT: FILE NAME SHOULD LOOK LIKE
' "C: \FASAFILE\CRONE\CC10SLCE"

--

OPEN FILESCN$ FOR BINARY AS #1 ' oculometer scan file
NUMSCANS = LOF(l1l) / 2 'can the file be found
IF NUMSCANS = 0 THEN
PRINT LOG$ (SB$, FILESCNS$); " FILE NOT FOUND" ' fix this test
EXIT SUB '

ELSE : PRINT LOGS$ (SB$, "NUMBER OF 4 SECOND SCANS IS "); NUMSCANS%
END IF

e s s e s 0 L I I . I I R I I N S S I N R I A N I L N R R R R T R S I S

OPEN FILEDATS FOR BINARY AS #2 'oculometer .dat file
NUMFIX% = 1OF(2) / 8 ‘can the file be found
IF NUMFIX% = 0 THEN

C-72

W

-

PRINT LOGS$ (8BS, FILEDATS) ; "FILE NOT FOUND" ' fix this test

EXIT SUB
ELSE : PRINT LOG$ (8B§, "NUMBER OF FIXATIONS IS ") NUMFIX%

Cc-713

(A}

TYPE REGTYPE

AX A8
BX
cX
DX
BP
SI
DI
FLAGS
DS As
E8 AsS
END TYPE

F 1A A4S

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
AS INTEGER
INTEGER
INTEGER

DIM INREG AS REGTYPE

DIM OUTREG
CPI! = 204.
DOTSIZE! =

TITLES = " Look Point Positions In

TS = 0

ON ERROR GOTO NOSUCHFILE
FOR INPUT AS #1

OPEN *

AS REGTYPE

8:
.01

fleindx1"

ON ERROR GOTO 0
IF T% = 1 THEN PRINT "Can't find INDEX file :": END

INPUT #1, FILENAMES
IFFILENAMES = "" THEN PRINT "B
RUN$ = RIGHT$ (FILENAMES, 8)
DAT$ = FILENAME$ + ", DAT"

PRINT
TS = 0

ON ERROR GOTO NOSUCHFILE
OPEN DAT§ FOR INPUT AS #2

RUNS$, DATS

ON ERROR GOTO 0
IF T$ = 1 THEN PRINT "Can't find .OCULOMETER DATA FILE :" +

CLOSE
OPEN "

2

R", #2, DATS, 8

Oculometer Coordinates"

LANK LINE INDEX FILE": EXIT DO

-==->DAT$: EXIT DO

FIELD #2, 2 AS A$, 2 As B$, 2 AS c$, 2 as D$

LENFLES = LOF(2) / 8

SCREEN 12

CLs 1

BLX = -5: BLY = -5: TRX = 5: TRY = §
TLX1 = 110: TLY1 = 50: BLX1 = 610: BLY1
WINDOW (BLX, BLY)-(TRX, TRY)

VIEW (TLX1, TLY1)-(BLX1, BLY1),

L T

S8FX! = 1 / CPI
SFY! = 1 / CPI!

C-74

'OK THE .DAT FILE IS OPEN FOR RAND

---->0M INPUT

CORNERS OF THE WINDO

---->W, INCHES
= 430 ' CORNERS IN P
---->IXELS

X0! = 0O
Yot = O
LOCATE 2, 23
PRINT TITLES$

J% = 0
FOR IN = 1 TO LENFLES t
GET #2, I%

A% = CVI(A$): BY = CVI(BS): Ck = cvI(C$): D% = CVI(DS)
IF A% <> O OR B% <> 0 OR C% > 10 THEN

J¥ = J% + 1

X! = SFX! * A% + XO!: Y! = SFY! ¢ B% + YO!

CIRCLE (X!, Y!), DOTSIZE

END IF
NEXT I%
LOCATE 3, 30
ID$ = DATES + " " + LEFT$ (TIME$, 5) + " " + RUNS§ + "
-——=> " 4+ STRS$ (J%)
PRINT ID$
[}
CLOSE 2
'CALL INTERRUPT (&H5, INREG, OUTREG) 1&H5 is print screen fu
--—-=>nction
SCREEN O
LOOP WHILE NOT EOF (1)
CLOSE 1
END
NOSUCHFILE:
T = 1

C-76

START:
PRINT " This program lists records from oculometer .DAT files."
DO
PRINT : PRINT
INPUT "enter file name"; FLES$
IF FLE§ = """ THEN END
NN§ = LEFT$ (RIGHTS (FLES$, 12), 8) + ".PRN"
PRINT NN$§
TS = 0
ON ERROR GOTO NOSUCHFILE
OPEN FLE$ FOR INPUT AS #1
ON ERROR GOTO O
IF T% = 1 THEN GOTO START
CLOSE 1
OPEN "R", #1, FLES, 8
FIELD #1, 2 A8 A$, 2 AS B§, 2 AS C§, 2 AS D$
LENFLES = LOF(l1) / 8
OPEN NN$§ FOR OUTPUT AS #8

PRINT #8, : PRINT #8,

PRINT #8, "THE FOLLOWING DATA IS FROM THE FILE, "; FLE$

PRINT #8, "The number of records on the file is : "; LENFLE%

PRINT , "The number of records on the file is : "; LENFLES,
---->FLES$

DO

PRINT

INPUT "STARTING RECORD # "; RNI%

IF RNI% = 0 THEN EXIT DO

INPUT "LAST RECORD # "; RNMAX%

IF RNMAX% = 0 THEN EXIT DO

IF RNMAXS% < O OR RNMAXS% > LENFLE% THEN RNMAX% = LENFLES$
IF RNI% < O OR RNI% > RNMAX% THEN RNI% = RNMAXS%

PRINT #8, "PRINT FROM RECORD # "; RNI%; " to "; RNMAX%
PRINT #8, "Record #", " x", " y", vwpupdiam", "Length"
FOR I% = RNI% TO RNMAXS
GET #1, I%
PRINT #8, I%, CVI(A$), CVI(BS), CVI(CS$), CVI(D$S)
NEXT I%
LOOP
CLOSE 1, 8
Loop
NOSUCHFILE:
PRINT "Couldn't find input file "; FLE$
™ = 1

RESUME NEXT

c-76

START:
PRINT " This program lists records from oculometer .DAT files."

Do
PRINT : PRINT
INPUT ‘"enter file name"; FLES$
IF FLES = "» THEN END
NN§ = LEFTS (RIGHTS (FLE$, 12), 8) + ".PRT"
PRINT NN$
T¢ = 0
ON ERROR GOTO NOSUCHFILE
OPEN FLES FOR INPUT AS #1
ON ERROR GOTO O
IF TS = 1 THEN GOTO START
CLOSE 1
OPEN "R", #1, FLE$, 10
FIELD #1, 2 AS T§, 2 AS A$, 2 AS B§, 2 AS C$, 2 AS D§
LENFLE& = LOF(1) / 10
OPEN NN§ FOR OUTPUT AS #8
PRINT #8, : PRINT #8,
PRINT #8, "THE FOLLOWING DATA IS FROM THE FILE, "; FLES$
PRINT #8, "The number of records on the file is : "; LENFLE%
PRINT , "The number of records on the file is : "; LENFLES;
~~~~>FLES$
DO
PRINT
INPUT "STARTING RECORD # "; RNI%
IF RNI% = 0O THEN EXIT DO
INPUT “LAST RECORD # "; RNMAX$%
IF RNMAXS = 0 THEN EXIT DO
IF RNMAX% < 0 OR RNMAXS > LENFLES% THEN RNMAXS% = LENFLE%
IF RNI§ < O OR RNIS > RNMAX% THEN RNI% = RNMAXS%
PRINT #8, "PRINT FROM RECORD # "; RNI%; " to "; RNMAX%
PRINT .8’ "Record *u' L LI x", " y", "Pupdiam", "I..ongth“
FOR I% = RNI% TO RNMAXS
GET #1, I%
PRINT #8, I8, CVI(T$), CVI(AS$), CVI(B§), CVI(C$§), CVI(DS)
NEXT I%
LooP
CLOSE 1, 8
LOOP
NOSUCHFILE:
PRINT "Couldn't find input file "; FLE$
TS = 1

RESUME NEXT

C-77



TYPE FIXCOMB

END
DIM

TGTTYPEN A8 INTEGER 'NON ZERO MEANS HIT
TGTTYPEC A8 STRING ¥ 4 'TARGET TYPE
FIXILNGTH A8 INTEGER

PUPDIAM AS INTEGER

TGTID AS STRING * 3 *ID OF CLOSEST TARGET
DISTANCE AS SINGLE 'BETWEEN CLOSEST TARGET AND FIXATION
FRAMENO AS INTEGER 'TIME HISTORY FRAME #
TGTX AS SINGLE '"TARGET POSITION
TGTY AS SINGLE

FIXX AS SINGLE tFIXATION POSITION
FIXY AS SINGLE

HEADING AS STRING * 3 'DICE
COUNTDOWN AS INTEGER 'DICE
CONTFIX AS STRING * 1 'IS THIS

—~===>A CONTINUATION OF THE PREVIOUS FIXATION
CROSSCHECK AS STRING * 1
ZONE AS STRING * 2 'WHAT AREA OF THE TUBE IS THE FIXATION?

SPEED AS STRING * 1 'SPLADT S-on, F-off
AIDON AS STRING * 1 '‘A-on, F-off
SPARE AS STRING * 8
TYPE
frmt$

DIM XX AS FIXCOMB

DIM XXX$

Frmtl1S = "## \ O\ HENE FHEE \ O\ HEE. 4 (112 A

Frmt2$ = "HHN HE NRE NN HEE I T AN 11 R

frmt38 = "1 1 \\ !t 1 1t N\ \"

START:

PRINT " This program lists records from oculometer .MRG files."

DO

C-78

PRINT : PRINT

INPUT "enter fULL FILE DESCRIPTOR WITH EXTENSION"; FLE$

IF FLE$ = "" THEN END

FLE1§ = LEFTS (FLES, LEN (FLES§) - 4)

OPEN FLE1l$ + ".MGX" FOR RANDOM AS #1 LEN = 4

IF LOF(l1) = O THEN PRINT " can't find index file "; FLE1§ +
———->" MGX": CLOSE 1: STOP

LENMGX% = LOF(l1) / 4: PRINT "NUMBER OF RECORDS ON MERGE FILE

---=> ="; LENMGX%; FLES$
OPEN FLE$ FOR INPUT AS #2
OPEN FLE1$ + ".PT1" FOR OUTPUT AS #8
PRINT #8, : PRINT #8,
PRINT #8, "THE FOLLOWING DATA IS FROM THE FILE, "; FLES§
PRINT #8, "The number of records on the file is : "; LENMGXS%
DO
PRINT

INPUT "STARTING RECORD # "; RNI%

IF RNIS% = O THEN EXIT DO

INPUT "LAST RECORD # "; RNMAX%

IF RNMAX% = 0 THEN EXIT DO

IF RNMAXS < O OR RNMAX% > LENMGX% THEN RNMAXS$ = LENMGX%



IF RNI§ < O OR RNI% > RNMAX% THEN RNI% = RNMAX%
PRINT #8, "PRINT FROM RECORD # "; RNI&; " to "; RNMAX%: PRI
--==>NT #8,

PRINT #8, "Rec# Tp Typ Fxt PD TgID Dist FrNo TgtX T
--=-=>gtY¥Y FixX FixY Hdg CD"

GET #1, RNI&, N&

SEEK 2, N&

FOR I§ = RNI% TO RNMAXS

INPUT #2, XX.TGTTYPEN, XX.TGTTYPEC, XX.FIXLNGTH, XX.PUPDIAM,

--—-> XX.TGTID, XX.DISTANCE, XX.FRAMENO, XX.TGTX, XX.TGTY, XX.FIX

LOOP

---->X, XX.FIXY, XX.HEADING, XX.COUNTDOWN, XX.CONTFIX, XX.CR
---->08SCHECK, XX.ZONE, XX.SPEED, XX.AIDON, XX.SPARE
PRINT #8, USING "#### "; I%;
PRINT #8, USING frmtl$; XX.TGTTYPEN; XX.TGTTYPEC; XX.FIXLNGT
———=>H; XX.PUPDIAM; XX.TGTID; XX.DISTANCE; XX.FRAMENO;
PRINT #8, USING frmt2$; XX.TGTX; XX.TGTY; XX.FIXX; XX.FIXY;
-—==3>XX.HEADING; XX.COUNTDOWN; XX.CONTFIX;
PRINT #8, USING frmt3$; XX.CROSSCHECK; XX.ZONE; XX.SPEED; XX
-—=->.AIDON; XX.SPARE
NEXT I%
LOOP
CLOSE 1, 2, 8

NOSUCHFILE:
PRINT "Couldn't find input file "; FLES$

TS =

1

RESUME NEXT

C-79



'?xr?;RES;FONT 62;EXIT;

DEFINT I-N

DECLARE SUB BI1l (BIP&())

DECLARE SUB BI2 (BIP&())

DECLARE SUB CRESBMRGFLE ()

DECLARE SUB FIN ()

DECLARE SUB FIXPOINTER ()

DECLARE SUB GETXX (FILENOS)

DECLARE SUB INIT ()

DECLARE FUNCTION LOG$ (SB$§, AS)

DECLARE FUNCTION LOGS$ (SBS§, AS$)

DECLARE SUB PUTXX (FILENO%)

DECLARE SUB YESORNO (A$, BS§)

CONST pit! = 3.14159

CONST nscanbuf = 400, nfixbuf = 5000

CONST SF! = .472, XOFF! = -3.27, YOFF! = -2.1, cpi! = 102.4, alph

——==>al! = -11.5 * pit! / 180, runoff! = -.34

CONST big! = 3!, little! = 1!

TYPE FIXCOMB
TGTTYPEN AS INTEGER 'NON ZERO MEANS HIT
TGTTYPEC AS STRING * 4 'TARGET TYPE
FIXLNGTH AS INTEGER
PUPDIAM AS INTEGER

TGTID AS STRING * 3 'ID OF CLOSEST TARGET
DISTANCE AS SINGLE 'BETWEEN CLOSEST TARGET AND FIXATION
FRAMENO AS INTEGER 'TIME HISTORY FRAME #
TGTX AS SINGLE 'TARGET POSITION
TGTY A8 SINGLE

FIXX AS SINGLE 'FIXATION POSITION
FIXY AS SINGLE

HEADING AS INTEGER 'DICE
COUNTDOWN AS INTEGER 'DICE
CONTFIX AS STRING * 1 'IS THIS

---=>A CONTINUATION OF THE PREVIOUS FIXATION
CROSSCHECK AS STRING * 1

ZONE AS STRING * 2 'WHAT AREA OF THE TUBE IS THE FIXATION?
END TYPE
DIM frmt$
e T I I AR YT T TT VAR TI I AR TTT AR IR TR 2 2 00 1 0 L1 08 2 AN J
S I NI Il Y IA

DIM XX AS FIXCOMB

DIM XXX$

DIM ACID(1 TO 50) AS INTEGER
DIM ROUTE (1 TO 50) AS INTEGER
DIM ZONE (1 TO 50) AS INTEGER
DIM ACX{(1 TO 50) AS SINGLE
DIM ACY(1 TO 50) AS SINGLE
DIM dicehead$ (1 TO 20)

DIM dicetimet (1 TO 20)

DIM IAID AS INTEGER

DIM TIEPEC(1 TO 50) AS STRING * 4
DIM TIEPEN(1 TO 50) AS INTEGER

C-30



DIM BI1P(1 TO 7) ASs INTEGER'Buffered Input 1
DIM BI2P(1 TO 7) AS INTEGER'Buffered Input 2

DIM BOP(1 TO 7) AS INTEGER 'Buffered Output
DIM FILEACPS, FILEDATS, FILEDUMS, FILEDX2§, FILEIDXS$, FILEMRGS, F
~=-=-=>ILESCNS$

DIM FILEACPS%, FILEDATS, FILEDUMS%, FILEDX2%, FILEIDXS%, FILEMRGS, F
-===>ILESCN%

DIM FIXPNTER(26000) AS INTEGER
DIM FIXLENGTH(1 TO nfixbuf) AS INTEGER
DIM INTRACK(1 TO nfixbuf) AS INTEGER
DIM NUMINTRACK, NUMOUTTRACK AS INTEGER
DIM N4SS, N588, N6SS, N78s, N8SS, N99s As INTEGER
DIMT4S8, T588, T6SS, T788, T8SS, T9ssS, P1SS, P2SS, P3SS AS SINGLE
DIM OCSCAN(1 TO nscanbuf, 1 TO 4) AS INTEGER
DIM PUPDIAM(1 TO nfixbuf) AS INTEGER
DIM SHARED NUMFIX$%, NUMSCANS, NOSTATS, NUMMRGS% , FILENAME1S$
————- l*t*ticoMMoN*t*tt*
DIM SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
DIM XLOOK(1 TO ntfixbuf) AS INTEGER
DIM YLOOK(1 TO nfixbuf) AS INTEGER
DIM IDX(1 TO 2000) AS LONG
! ** FILE NUMBERS #*+*

! #1 SCN #2 DAT #3 Acp
! #4 IDX #5 Dx2 #6 MRG
' #7 puM #8 #9 PRINTER.FLE

DIM PAGE$, FONT$

NOSTATS = 10

DIM STATXS (NOSTATS) , STATYS (NOSTATS) AS SINGLE

DIM STATID(NOSTAT%) AS STRING * 4

DATA IIDEN " ’ " Ioc " ' "m L R IIKEAN" ‘ IIE'I‘TS" R IIWIVSH ' "BYSN" . LU TRDZ" R IIDRK
————)o" ’ llmnll

FOR I = 1 TO NOSTAT%: READ STATID(I): NEXT I

DATA 2.38,-19.49,—0.3,19.44,10.92,-10.24,-23.07,-8.22,29.42,14.67

FOR I = 1 TO NOSTATS: READ STATXS(I): NEXT I

DATA -.63,24.92,6.1,28.79,14.1,14.1,—26.08,-11.24,—19.56,-9.23
FOR I = 1 TO NOSTATS: READ STATYS(I): NEXT I

SB§ = " (MAIN

PRTCONTROL$ = CHR$(33) + "R" + CHRS (33)

PAGE§ = PRTCONTROLS + " ;PAGE ; EXIT;" 'OFFICE
FONT§ = PRTCONTROL$ + ";RES;FONT 62; EXIT;" 'OFFICE
'PAGE$ = CHRS (12) ' HOME
'FONT$ = CHR$ (27) + CHRS (80) ' HOME

DIM SINAL!, COSAL!
SINAL! = SIN(alpha!): COSAL! = COS(alpha!)

KUKS = NN R R\ O\ R RE R RRR R R A SRR A

—m==> HE REE REER 1 1 \\n

'XX.TGTTYPEN = O: XX.TGTTYPEC = "UNK": XX.FIXLNGTH = O: XX.PUPDIM

-===> = 0: XX.TGTID = "Jil"

'XX.DISTANCE = 9999: XX.FRAMENO = 9999: XX.TGTX = 0: XX.TGTY = O:

-===> XX.FIXX = 0: XX.FIXY = 0

'XX.HEADING = 999: XX.COUNTDOWN = 0: XX.CONTFIX = 0: XX.ZONE = 99

OPEN "BRENNAN" FOR INPUT AS #12

C-81



DO

CALL INIT

CALL FIXPOINTER

PRINT LOG$ (SB§, " FINISHED FIXPOINTER")

CALL CRESBMRGFLE

PRINT LOGS (SB$, " FINISHED CRESMRGFLE")

CALL FIN 'Close FILES

t st vseecesnsssnasnssasserosnnereessssd

END ' MAIN PROGRAM ' DUMMY PAGE$§ 2r?; PAGE;EXIT;

SUB Bl1 (BIP%())
'Increment 1'st INPUT £ile

FT112111141)

'PArameters. ... ..o \
'Other input data....... \
'Input files...........: \
1other output data...... \
‘output files.........-.- \
TFUNCELOoN. . . v i e v s e \
TCOMMONtS. .« oot \
FTII2E12 21

SHARED OCSCAN() AS INTEGER
SHARED FILEACPS, FILEDATS, FILEDUMSY, FILEDX2%, FILEIDXS, FILEMRGHS
---->, FILESCN%

NORIB = BIP%(3) - BIP%(2) 'If buffer low AND EOF=.F.
IF NORIB < O THEN NORIB = NO 1B + BIP%(1)
IF NORIB < BIP% (4) AND BIP%(6) = 0 THEN
FORI = 1 TO BIP%(5) i 'Load buffer
GET FILESCNSY, , OCSCAN (BIP& (3), 1)
BIP%(3) = BIP%(3) + 1
IF BIP%(3) > BIPS% (1) THEN BIP%(3) =1
1IF EOF (FILESCN%) THEN '
BIP% (6) = BIP%(3) 'points at last
EXIT FOR
END IF
NEXT I
END IF
JDUM = BIP%(2)
BIPS (2) = BIPS%(2) + 1: IF BIP%(2) > BIP%(1l) THEN BIP%(2) = 1 'Inc
——==>rement first
IF BIP%(2) = BIP%(6) THEN 'READ BEYOND DATA
BIP% (2) = JDUM
PRINT "###*#++ ERROR READING EOF (FILESCN%) IN BIl dekdkdkdk

'8I2ZE, FIRST, LAST, ’1'36 ,NREC , NEOF, P1

SUB BI2 (BIP%())

c-82



'Increment 2'nd INPUT file

THNNRER R

'Parameters.............\ BIP%(), circular buffer pointers

1O0ther input data.......\

'Input files........... .\FILEDATS = DAT

'Other output data......\BIP%(), XLOOK(),YLOOK(),6 PUPDIAM() , FIXLEN

--~-=>GTH() , INTRACK()
' \SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK, NUMINTRACK, NUMOUTTRACK
'‘Output files........... \
'‘Function............... \Read the fixation data into circular buf
---=->fers and
! \compute a few preliminary statistics.
'‘Comments.......co000c.. \
THENRRIRANY
SHARED INTRACK() AS INTEGER
SHARED FIXLENGTH() AS INTEGER
SHARED XLOOK() AS INTEGER
SHARED YLOOK() AS INTEGER
SHARED PUPDIAM() AS INTEGER
SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER
SHARED N48S, N538, N6SS, N788, N8ss, N9SS8 AS INTEGER
SHARED T4S8, TS588, T6SS, T7SS, T8SS, T9SS, P1SS, P2SS, P3SS AS SI
-=-==->NGLE
SHARED FILEACPS, FILEDATS, FILEDUMS, FILEDX2%, FILEIDXS%, FILEMRGS
~~==>, FILESCN%
'SIZE,FIRST,LAST,TRIG,NREC,NEOF,Pl
NORIB = BIP%(3) - BIP%(2) 'If buffer low AND EOF=.F.
IF NORIB < 0O THEN NORIB = NORIB + BIP%(1l)
IF NORIB < BIP&%(4) AND NOT EOF (FILEDAT%) THEN

FOR I = 1 TO BIP%(5) 'Load buffer
GET FILEDATS, , XLOOK(BIP%(3)): GET FILEDATS, , YLOOK (BIPS (3
-—==>)) 'read record

IF NOT EOF (FILEDATS) THEN
GET FILEDAT%, , PUPDIAM(BIP%(3)): GET FILEDATS%, , FIXLE

-—-==>NGTH(BIP% (3))
SUMFIXLENGTH = SUMFIXLENGTH + FIXLENGTH (BIP%(3))
————D> 'total of fixations
INTRACK(BIP%(3)) = 1
IF XLOOK(BIP%(3)) = 0O AND YLOOK (BIP%(3)) = 0 AND PUPDIA
-—=->M(BIP%(3)) < 11 THEN ' out of track
INTRACK(BIP%(3)) = 0
SUMOUTTRACK = SUMOUTTRACK + FIXLENGTH (BIP%(3)) 'tot
~---->al out of track
NUMOUTTRACK = NUMOUTTRACK + 1
SELECT CASE FIXLENGTH (BIP%(3))
CASE I8 <= 3
N4SS = N4SS + 1: T4SS = T48S + FIXLENGTH
-—-—=>(BIP%(3))
CASE IS <= 12
N5SS = N5SS + 1: T58S = T588 + FIXLENGTH
-—-==>(BIP%(3))

CASE IS > 12

c-83



N688 = N68S + 1: T688 = T6SS + FIXLENGTH
-=-=-=>(BIP%(3))

END SELECT
ELSE ' in track

SUMINTRACK = SUMINTRACK + FIXLENGTH(BIP%(3))
————D 'total intrack

NUMINTRACK = NUMINTRACK + 1
SELECT CASE FIXLENGTH (BIP%(3))
CASE I8 <= 3

N798 = N788 + 1: T788 = T788 + FIXLENGTH
-=-=-=>(BIP%(3))

P188 = P1SS + PUPDIAM(BIP%(3))
CASE I8 <= 12

N8SS = NBSS + 1: T8S8 = T8SS + FIXLENGTH
-===>(BIP%(3))

P28S = P2SS + PUPDIAM(BIP%(3))
CASE IS8 > 12

N9S8S = N9SS + 1: T98S = T988 + FIXLENGTH
-===>(BIP%(3))

P38S = P3SS + PUPDIAM(BIP%(3))
END SELECT
END IF
BIPS(3) = BIP%(3) + 1
IF BIP%(3) > BIP%(1l) THEN BIP&%(3) =1
ELSE
EXIT FOR
END IF
NEXT I
END IF
BIP%(2) = BIPR(2) + 1: IF BIP%(2) > BIP%(1l) THEN BIP%(2)

= 1'Incr

-~-~-=->ement first

--------

END SUB 'BI2 'DUMMYPAGE$  ?r?;PAGE;EXIT;

SUB CRESMRGFLE

"HERNRRRER

'Parameters............. \

'Other input data....... \

‘Input files............ \

‘Other output data...... \

'output files........... \

‘Function..........c.... \

'‘Comments..........oo... \

THERRRAREN S

SHARED BI2P() AS INTEGER 'BufferedInput 2

SHARED FILEACPS, FILEDAT$, FILEDUM$, FILEDX2$, FILEIDX$, FILEMRGS$
—~--->, FILESCN$

SHARED FILEACP%, FILEDATS, FILEDUM%, FILEDX2%, FILEIDXS%, FILEMRGS
---=>, FILESCN%

SHARED FIXLENGTH() AS INTEGER
SHARED FIXPNTER() AS INTEGER

Cc-84



SHARED XLOOK() AS INTEGER
S8HARED YLOOK() AS INTEGER
SHARED PUPDIAM() AS INTEGER
SHARED XX AS FIXCOMB

XX. TGTTYPEN = 0: XX.TGTTYPEC = "UNK" : XX.FIXLNGTH = O: XX.PUPDIAM
---=>% = 0: XX.TGTID = "Jil"
XX.DISTANCE = 99.99: XX.FRAMENO = 9999: XX.TGTX = 0: XX.TGTY = O:
----> XX.FIXX = 0: XX.FIXY = 0
XX.HEADING = 999: XX.COUNTDOWN = 0: XX.CONTFIX = "Z": XX.CROSSCHE
-—-=>CK = "Z": XX.ZONE = "QQ9"
SEEK #FILEDATS, 1 'REWIND FILE & RESET BUFFER '
I = nfixbuf: BI2P(1) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) = .2
———>% T
BI2P(5) = .7 % I: BI2P(6) = O: BI2P(7) = 1
FOR I = 1 TO NUMMRGS
CALL BI2(BI2P())
II = BI2P(2)
XX.PUPDIAM = PUPDIAM(II): XX.FRAMENO = FIXPNTER(I): XX.FIXX
---->= XLOOK(II) / cpi!
XX.FIXY = YLOOK(II) / cpi!: XX.FIXLNGTH = FIXLENGTH(II)
IF XLOOK(II) = O AND YLOOK(II) = O AND PUPDIAM(II) < 11 THEN

————D ' out of track
XX.TGTTYPEN = 89: XX.TGTTYPEC = "OoUuT™"
IF FIXLENGTH(II) < 13 THEN XX.TGTTYPEN = 80: XX.TGTTYPE
-...—_>C ] "BI.NK"
END IF
' CALL PUTXX (FILEMRGY)
XX.TGTTYPEN = 0: XX.TGTTYPEC = "UNK"
NEXT I
'CLOSE FILEMRGH
L
L}
END SUB 'CRESMRGFLE 'DUMMYPAGE$  ?r?;PAGE;EXIT;
SUB FIN
THRRBENREAN
‘Parameters............. \
‘Other input data....... \
'Input files...... eeaan \
'Other output data...... \
'Output files........... \
‘Function............... \
'Comments. .... Cheae e \
THARARRERNN
PO = 1

SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED NUMINTRACK, NUMOUTTRACK AS INTEGER

C-85



SHARED N4§S8, N388, N68S, N788, N8SS, N9SS AS INTEGER
SHARED T4S8, T588, T688, T788, T8SS, T9SS, P18S, P28sS, P3SS AS SI
-—==>NGLE
CN! = 1 / 30: T488 = CN! * T488: T58S = CN! * T588: T68S = CN! *
-===D>TESS
T788 = CN! * T788: T8S8 = CN! * T8SS: T98S = CN! * T9SS
CN1! = 25.4 / 2048: P1SS = P18S * CN1! / N7SS: P2SS = P28S * CN1!
----> / N8SS: P3S8 = P38S * CN1! / N9SsS
8SBS = " (FIN "
IF NUMINTRACK <> O AND NUMOUTTRACK <> O THEN
F1$ = "& #4##._ 44 SECONDS"
F28 = "& ##. 4% SECONDS"
F3§ = ng #4444 BREE 40 MTIRINILIRIRIIINIEIIIN A
FA4$ = ng BN 00 HRR_ 88 SN 0
PRINT LOGS (8B$, "NUMBER OF IN TRACK FIXATIONS= "); NUMINTRAC

-—=-=>K; ' totals for .txt file
PRINT LOGS (8BS, "NUMBER OF OUT TRACK FIXATIONS="); NUMOUTTRA
~===>CK

PRINT USING F1$; LOG$ (SB$, "TOTAL TIME IN TRACK IS ") ; SUMI
---=>NTRACK / 30
PRINT USING F1$; LOGS$ (SB$, "TOTAL TIME OUT TRACK IS8 ") ,; SUMO
--—=>UTTRACK / 30
PRINT USING F1§; LOGS (SB$, "TOTAL FIXATION TIME IS "); SUMF
~--—-=>IXLENGTH / 30

PRINT USING F2$; LOGS (SB$, "AVERAGE IN TRACK FIXATION 1S n
-——=>) ; SUMINTRACK / NUMINTRACK / 30

PRINT USING F2§; LOG$ (SB$, "AVERAGE OUT TRACK FIXATION IS "
---->) ; SUMOUTTRACK / NUMOUTTRACK / 30

PRINT LOGS (8BS, "N4 THROUGH N9 = "); N4SS; N588; N6SS; N788;
-—-—-> N88S; N98s
PRINT USING F3$; LOG$(SB$, "T4 THRU T9 = "); T4SS; TSSS; T6S
--==>8; T78S; T8SS; T9SS
PRINT USING F4$; LOG$(SB§, "PUP DIAM 1 TO 3 = ") P18sS; P28S
---=>; P388

IF PO = 1 THEN

PRINT #8, nEEEEAQERRREAQERARRRRRRRARARARRRRRRRRRRRRRRRRRRE
---->gQEeEEEERRRRRARRRRE"
PRINT #8, FILENAME1l$, FILENAME1S, FILENAME1S$, FILENAMEL
--=-=>$, FILENAME1lS$

PRINT #8, LOG$ (SB$, "NUMBER OF FIXATIONS IS (-N1-)");

---->NUMFIXS%
PRINT #8, LOGS$ (SB$, "NUMBER OF IN TRACK FIXATIONS= (-N2
~===>=)"); NUMINTRACK ' totals for .txt file

PRINT #9, LOGS (SBS, "NUMBER OF OUT TRACK FIXATIONS=(-N3
‘ —===>=)1"); NUMOUTTRACK

PRINT #8, LOG$(SB§, " (-N4 THROUGH N9-) = "); N4SS; N588
-—==>; N68SS; N7S8S; N8SS; N9Ss

PRINT #8,

PRINT #8, USING F1$; LOG$ (SB§, "TOTAL FIXATION TIME IS
-———==> (-T1-)"); SUMFIXLENGTH / 30

PRINT #8, USING F1$; LOGS$ (SB$, "TOTAL TIME IN TRACK IS
-—==> (-T2-)"); SUMINTRACK / 30
PRINT #8, USING F1$; LOG$ (SB$, "TOTAL TIME OUT TRACK IS

c-8¢



-—==> (-T3-)"); SUMOUTTRACK / 30
PRINT #8, USING F3§; "(-T4 THRU T9-)"; T4SS; T5S8S; T6SS
-—-->; T788; TB8SS; T9SS
PRINT #8,
PRINT #8, USING F4$; LOG$(SB$, "(-PUP DIAM 1 TO 3-) = "
---->); P18S; P2SS; P3SS
PRINT #8, : PRINT #8,
PRINT #8, USING F2§; LOG$ (SB$, "AVERAGE IN TRACK FIXATI
---->0ON IS "); SUMINTRACK / NUMINTRACK / 30
PRINT #8, USING F2$; LOG$ (SB$, "AVERAGE OUT TRACK FIXAT
-—==>ION IS "); SUMOUTTRACK / NUMOUTTRACK / 30
PRINT #8, LOGS (SB§, "NUMBER OF 4 SECOND SCANS IS "); N
-~==>UMSCAN%
PRINT #8, LOGS$(SB$, "NUMBER OF MERGE FILE FIXATIONS IS
-—==> ") ; NUMMRGS%
END IF
END IF
CLOSE 1, 2, 3, 4, 5, 6, 7, 8, 9

END SUB ' FIN 'DUMMYPAGES$ ?r?;PAGE ;EXIT;

SUB FIXPOINTER
THRNERRNRES
‘Parameters............. \
'Other input data..... o\
'‘Input files..... AN
'Other output data...... \
‘Output files........... \
‘Function............ e\
\

THEANERRREY

ke

Tk This routine assigns a time history record #, (I), to

thkd each fixation. The contents of FIXPNTER(N) indicates

Vhkk which time record the N'th fixation is associated

Thkkw with and therefore where one should seek the target

TRk of the fixation.

A

SHARED FIXPNTER() AS INTEGER

SHARED FILEACP%, FILEDATS, FILEDUM%, FILEDX2%, FILEIDXS%, FILEMRG%Y
---->, FILESCN%

SHARED BI1P() AS INTEGER 'Buffered Inputl

SHARED OCSCAN() AS INTEGER o

SHARED PAGE$, FONTS$

kR

ik The first scan # is recorded at time = 4 seconds.
YRRk Therefore if the third scan # is 3 and the 4'th
Vhkw scan # is 10, then scans 5 through 11 point at
kW targets recorded at t=12 seconds or i=4 since
thAk i=1 corresponds to t=0.

kR

c-87



Thuk The first entry on the time history file is time=0.

A A The second entry is time=4 seconds.

ke The first scan toggle precedes slightly this 2'nd
A A entry i.e. ~4 seconds into the run. Thus spake Buddy
Yk after careful consideration and investigation on 4/3/91.
R

FTT If the 1'st scan # is k, then fixations <= (k+l1) are
Thww pointed at time history frame 1, i.e. time=0.
TR

thhk The last time history frame is not used.

RTY

SB§ = " (FIXPOINTER "

SEEK #FILESCNS, 1 'REWIND FILE & RESET BUFFER :

'8IZE, FIRST, LAST, TRIG,NREC, NEOF, P1
I = nscanbuf: BI1P(1l) = I: BI1P(2) = O: BI1P(3) = 1: BI1P(4) = .2
————> % I
BI1P(5) = .7 % I: BI1P(6) = O: BI1P(7) = 1'nscanbuf is a constant
SCNPREVS = -1

FORI = 1 TO NUMSCANS% ' I is the record# on the ACP file
CALL BI1l(BI1P()) ' NUMSCAN% defined in INIT
scn% = OCSCAN(BI1P(2), 1) 'scn¥= fixation# from SCN file

IF scn% >= 1 AND scn% <= NUMFIX% THEN
IF scn$ > SCNPREVS THEN
FOR J = SCNPREVAY + 2 TO scn% + 1
IF J <= NUMFIX% THEN
FIXPNTER(J) = I

JTEMP = J
END IF
NEXT J
SCNPREVS = scn$
ELSE
IF scn% < SCNPREVS% THEN
PRINT LOG$(SB$, "khkkkkkdk* ERROR SCAN POINTER
~——-->DECREASING "); I, scn$%
END IF
END IF
ELSE
PRINT LOG$ (SB$, "FIXATION POINTER OUT OF RANGE"); I; BI
-—==>1P(2); scn%
END IF
NEXT 1
NUMMRGS = JTEMP ' NUMMRGS% DEFINED

PRINT LOG$ (SB§, "NUMBER OF MERGE FILE FIXATIONS IS "), NUMMRGS

'The remainder of this routine prints out the time history record
~-=--> corresponding

'to a fixation. It does this for the first and last "NOP" fixatio
--~=->ns. Its set up

'the DISC Kyocera printer. Clean all this out later.

PRINT #9, PAGES$

PRINT #9, FONT$

PRINT #9, : PRINT #9, LOGS$(SB$, " FIRST PART OF FILE............

NOP = 1600

c-88



FOR J = 1 TO NOP
PRINT #9, USING "###¥##"; FIXPNTER(J);
IF J MOD 24 = 0 THEN
PRINT #9, : L =L + 1
END IF
IF L = 60 THEN
PRINT #9, PAGE$: PRINT #9, : PRINT #9,

L=3
END IF
NEXT J
L =3
PRINT #9, PAGE$: PRINT #9,
PRINT #9, LOGSS$(SB$, " LAST PART OF FILE.......0uvueinennennennns

FOR J = NUMFIX% - NOP + 1 TO NUMFIX$%
PRINT #9, USING "#####"; FIXPNTER(J);
IF J MOD 24 = O THEN
PRINT #9, : L= L + 1
END IF
IF L = 60 THEN
PRINT #9, PAGE$: PRINT #9, : PRINT #9,

L =3

END 1IF
NEXT J
]
END SUB ' FIXPOINTER ' DUMMYPAGE$ ?r?;PAGE; EXIT;
SUB GETXX (FILENO%)
THENRERRR AN
'Parameters............. \
'Other input data....... \
‘Input files............ \
'‘Other output data...... \
toutput files........... \
'Function. .............. \
‘Comments. .............. \
THRARURNREN

'Read the array XX from a record on the FILEMRGS file.
SHARED XX AS FIXCOMB
INPUT #FILENOS%, XX.TGTTYPEN, XX.TGTTYPEC, XX.FIXLNGTH, XX.PUPDIAM
-===>, XX.TGTID, XX.DISTANCE, XX.FRAMENO, XX.TGTX, XX.TGTY, XX.FI
--==>XX, XX.FIXY, XX.HEADING, XX.COUNTDOWN, XX.CONTFIX, XX.C
---=->ROSSCHECK, XX.ZONE

----------------------------------------------------------------

END SUB ' GETXX ' DUMMY PAGE$ ?r?; PAGE ;EXIT;

SUB INIT
'HHNENRNAEY
'Parameters............. \

c-89



'‘Other input data....... \

‘Input files............ \

'Other output data...... \

‘Output files........... \

'‘Punction.........c.c0..n \

'‘Comments. ......c0000-an \

THENRRRRN N

SHARED BI1lP() AS INTEGER '‘BufferedInput 1
SHARED BI2P() A8 INTEGER 'BufferedInput 2
SHARED BOP({) AS INTEGER 'BufferedOutput

SHARED FILEACPS$, FILEDATS$, FILEDUMS, FILEDX2$, FILEIDX$, FILEMRGS
---->, FILESCNS$
SHARED FILEACPS, FILEDATS, FILEDUMS, FILEDX2%, FILEIDX%, FILEMRGSH
—===>, FILESCN%
SHARED IAID AS INTEGER
SHARED NUMINTRACK, NUMOUTTRACK A8 INTEGER
SHARED N4SS, N588, N6SS, N788, N8SS, N9SS AS INTEGER
SHARED T488, T588, T6SS, T788, T8SS, T98S, P18S, P2SsS, P38S AS 8I
-~--=>NGLE
SHARED SUMFIXLENGTH, SUMINTRACK, SUMOUTTRACK AS LONG
SHARED XX AS FIXCOMB
8B§ = " (INIT "
'8IZE,FIRST,LAST, TRIG,NREC, 6 NEOF, P1
I = nscanbuf: BI1P(1l) = I: BI1P(2) = 0: BI1P(3) = 1: BI1P(4) = .2
——==> %1
BI1P(5) = .7 * I: BI1P(6) = O: BI1P(7) =1
'FOR L = 1 TO 7: print BI1P(L): NEXT L
I = nfixbuf: BI2P(1l) = I: BI2P(2) = 0: BI2P(3) = 1: BI2P(4) = .2
——==2>% 1
BI2P(5) = .7 * I: BI2P(6) = 0: BI2P(7) =1
I = nfixbuf: BOP(1l) = I: BOP(2) = 1: BOP(3) = 1: BOP(4) = .9 * I
BOP(5) = .8 * I: BOP(6) = O: BOP(7) =1
NUMFIX% = O0: NUMSCANS = O
SUMFIXLENGTH = 0: SUMINTRACK = 0: SUMOUTTRACK = 0
NUMINTRACK = 0: NUMOUTTRACK = O
N4SS = O: NS88 = 0: N6SS = O: N78S = O: N8SS = 0: N9SS = 0
T4SS = O!: T588 = O!: T6SS = O!: T78S = O!: T8SS = 0!': T9SS = O!

----------------------------------------------------------------

'INPUT " ENTER OCULOMETER FILE NAME ", FILENAMES$
'FILENAMES$ = COMMANDS$ . )
LINE INPUT #12, FILENAMES$ : &
IF FILENAMES = "" THEN PRINT : PRINT : PRINT : STOP i
FILENAME1S = RIGHTS$ (UCASES (FILENAMES), 8)
SELECT CASE MID$ (FILENAME1§, 5, 1)
CASE "M"
IAID = 1
CASE 1] Dll
IAID = 2
CASE "G"
IAID = 3
CASE "8"
IAID = 4
CASE ELSE

C-80



IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOG$ (SB§, "CASE FROM FILENAME MUST BE MN,D
---->C,GR or SL"): PRINT : STOP
IAID1 = VAL(MIDS$ (FILENAME1lS$, 7, 1))
IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOGS$ (SB$, "CASE FROM FILE
-=--=->NAME MUST BE 170 OR 210"): PRINT : STOP
IAID = IAID * 10 + IAID1l: PRINT IAID
PR$ = "PRINTER.FLE"
OPEN PR$ FOR OUTPUT AS #9

FILEACPS$ = FILENAMES$ + ".ACP": FILEACP% = 3 'append extension
FILEDATS = FILENAMES + " _.DAT": FILEDATHK = 2 'append extension
FILEDUM$ = FILENAME$ + ".DUM": FILEDUMS = 7

FILEDX2$ = FILENAME$ + ".DX2": FILEDX2% = 5

FILEIDX$ = FILENAMES$ + ".IDX": FILEIDX% = 4

FILEMRGS = FILENAMES + " .MRG": FILEMRGY = 6

FILEOUT$ = FILENAMES$ + ".OUT"

FILESCNS = FILENAMES + ".SCN": FILESCN% = 1

FILEQKS = FILENAME1l$ + "QCK": FILEQKS% = B

OPEN FILEQKS$ FOR OUTPUT AS FILEQKS%

! COMMENT: FILE NAME SHOULD LOOK LIKE

! n"C:\FASAFILE\CRONE\CC10SLCE"
' COMMENT: FILE NAME SHOULD LOOK LIKE

! "C: \FASAFILE\CRONE\CC10SLCE"
1

OPEN FILESCNS FOR BINARY AS #1 ' oculometer scan file
NUMSCANR = LOF(1) / 2 ‘can the file be found
IF NUMSCANS = 0 THEN
PRINT LOGS (SB$, FILESCNS); " FILE NOT FOUND" ' fix this test
EXIT SUB
ELSE : PRINT LOGS(SBS, "NUMBER OF 4 SECOND SCANS IS '"); NUMSCANS%

OPEN FILEDATS FOR BINARY AS #2 'oculometer .dat file

NUMFIX$ = LOF(2) / 8 ‘can the file be found

IF NUMFIX% = 0 THEN
PRINT LOGS$ (SBS, FILEDATS); "FILE NOT FOUND" ' fix this test
EXIT SUB

ELSE : PRINT LOGS$ (SB$, "NUMBER OF FIXATIONS IS "), NUMFIX%

S 8 6 5 4 5 8 5 5 6 8 T G S S S TS S e T S a s e E e .

@ ® 6 5 6 8 @ 5 8 9 5 9 S T P 6 8 B S G S G G 0 e I B W e NS S S e e S e e e e e e NS a0 e

END SUB ' INIT ' DUMMY PAGE $ ?r?; PAGE ;EXIT;

SUB PRNDAT (STRT&, NOR%)

THHRERRNEE
'Parameters............. \
'Other input data....... \

c-91



‘Input files............ \

'‘Other output data..... A\

'Output files........... \

'Function. . ...cccctveevan \

'Comments. .....cc0000nenn \

THERRERRN A

'INPUT " ENTER OCULOMETER FILE NAME " FILENAMES$

*IF FILENAMES = "" THEN PRINT : PRINT : PRINT : STOP
FILENAME$ = "C:\FASAFILE\CRONE\CC10SLCE"

FILEDAT$ = FILENAMES + " .DAT" 'append extension

OPEN FILEDAT$ FOR BINARY AS #2 'oculometer .dat file

NUMFIX% = LOF(2) / 8 ‘can the file be found

IF NUMFIXS = O THEN ‘
PRINT LOGS$ (SB$, FILEDATS); "FILE NOT FOUND" ' £ix this test
EXIT 8UB

ELSE : PRINT LOGS (SB$, "NUMBER OF FIXATIONS IS "); NUMFIX%
END IF
SEEK 2, (STRT& - 1) *+ 8 + 1
FOR I = 1 TO NOR%
IF NOT EOF(2) THEN
GET 2, , X1%: GET 2, , X2%: GET 2, , X3%: GET 2, , X4%
PRINT USING "####"; X1%; X2%; X3%; X4%

END IF
NEXT I
CLOSE 2
1)
R RO
END SUB ' PRNDAT 'DUMMYPAGE$  ?r?; PAGE;EXIT;
SUB PUTXX (FILENO%)
TRHRERENRRAN
‘Parameters. ............ \
'Other input data....... \
'*Input files............ \
'Other output data...... \
'‘Output files........... \
'Function. .............. \
'‘Comments...........J ...\
THERNRERRNY
'Write the array XX to a recoxd on the FILEMRGS file. =
SHARED XX AS FIXCOMB g

WRITE #FILENON, XX.TGTTYPEN, XX.TGTTYPEC, XX.FIXLNGTH, XX.PUPDIAM
---=>, XX.TGTID, XX.DISTANCE, XX.FRAMENO, XX.TGTX, XX.TGTY, XX.FI
---=>XX, XX.FIXY, XX.HEADING, XX.COUNTDOWN, XX.CONTFIX, XX.C
--—->ROSSCHECK, XX.ZONE

----------------------------------------------------------------

----------------------------------------------------------------

END SUB ' PUTXX ' DUMMYPAGE$ ?r?; PAGE ;EXIT;

C-92



DEFINT I-N
DECLARE SUB FINDTGTPL (L%)
DECLARE SUB INIT (FILENAMES, FILENAME1§)
DECLARE SUB FILBLNK1 ()
DECLARE FUNCTION LOG$ (SB$, AS$)
DECLARE SUB PRNZONE (ZONE! ())
DECLARE SUB READSEQ ()
CONST NoccS = 4, 1gl = 5, 1g2 = (NOCCS + 1) * lqgl
'Max order CCS's, # of accumulators each- N, ¢t, t*t, D, D*D
CONST NOZ = 4, NOZP = 10, NOTGT = 6, NOTP = 16'# of rows in zone
--—-=>pair array,
* # of target pairs...
DIM ISEQNUM, IRCNOA, IRCNOEND, ISWTCHNO, ITYPENOA, ITYPENOB, TYPE
---->A$, TYPEB$
DIM IDAS$, IDBS$, ISEQT, ZONEAS$, ZONEBS, AIDONAS, AIDONBS$, SPEEDAS,
----> SPEEDB$
DIM IOVERLAPT, DIST, HEADA$, HEADB$, ICNTA, ICNTB
DIM AAAAS
DIM IAID AS INTEGER
DIM BLANK1 (1g2)
DIM ZNE$ (NOZP), TGTS$ (NOTP), SLOTS$ (6)
DIM ZONE (NOZP, 1g2), TGTS(NOTP, 1g2), SLOT(6, 15)
DIM ZONED (NOZP, 1g2), TGTSD(NOTP, 1g2)
DATA "1/1" ' "1/2" , ||1/3n ’ u2/3u . n2/2n ' v|1/4n , n3/3n ' "OTH", "BTBK", "ALL"
FOR I = 1 TO NOZP: READ 2NE$§ (I): NEXT I
DATA 1,2,3,6,2,5,4,8,3,4,7,8,6,8,8,8
FOR I = 1 TO NOZ: FOR J = 1 TO NOZ: READ I2ZN(I, J) : NEXT J: NEXT
-——=>1
DATA "ALL","AC/AC","AC/OWNTG", "AC/OTHTAG" , "TAG/TAG", "AC/OM" , "TAG/
——==>0M", "AC/FNL"
DATA "TAG/FNL", "AC/AID","TAG/AID", "AID/AID" ,"AC/OTH" ,"TAG/OTH","O
-==->TH", "NOTA"
FOR I = 1 TO NOTP: READ TGTS$(I): NEXT I
DIM ITGTN (NOTGT, NOTGT)
DATA2,4,10,6,8,13,4,5,11,7,9,14,10,11,12,15,15,15,6,7,15,15,15,15
DATA 8,9,15,15,15,15,13,14,15,15,15,15
FOR I = 1 TO NOTGT: FOR J = 1 TO NOTGT: READ ITGTN(I, J): NEXT J:

----> NEXT I
DATA "SL/XX","AC/OWNSL",“AC/OTHSL","TAG/OWNSL","TAG/OTBSL","SL/OT
. ...___>H"
FOR I = 1 TO 6: READ SLOT§(I): NEXT I
' **+ FILE NUMBERS **
' #1 FILE INDEX #2 #3
' #4 #5 #6
' #7 ccs #8 PR1 #9

)

SPSINV! = 1 / 30: SBS§ = v (CNTSEQ_I "

AAAAS = " Finished-End of list file"

HEADINGS = " SEQ# STRT-FNSH TOG TYPE TYPE - TGTID TIM
-=-==>E ZONE AID SPD LPOV DSTAB"

INPUT " Enter full file descriptor for Index file ", INDEXS$

OPEN INDEX$ FOR INPUT AS #1

C-93



nof = 0
DO WHILE NOT EOF(1l)

INPUT #1, FILENAMES

IF LEN(FILENAMES) <= 4 THEN EXIT DO
FILENAME1S = RIGHTS (UCASES (FILENAMES), 8)
CALL INIT(FILENAMES$, FILENAME1lS)
FLSTRNG$ = FLSTRNG$ + FILENAMEl$

OPEN FILENAMES + ".CC8" FOR INPUT AS #7
OPEN FILENAMES + ".PR1" FOR OUTPUT AS #8

PRINT #8, LEFTS$(DATES, 5) + " " + LEFT$(TIMES, 5); SPC(24);
---->FILENAME1$

PRINT LEFTS (DATE$, 5) + " " + LEFT$ (TIME$, 5); SPC(24); FILE
---~>NAME1$

PRINT LOGS (SBS, " Start"); EOF(1)

nof = nof + 1

DO

CALL READSEQ

CALL FILBLNK1

IZ = VAL(ZONEAS): JZ = VAL (ZONEBS)

IF IZ >= 1 AND IZ <= NOCCS AND JZ >= 1 AND JZ <= NOCCS THEN
L = I2ZN(IZ, JZ)

ELSE
L = NOZP - 1 'Bit Bucket
PRINT " ZBB"; IZ; JZ;

END IF

'Accumulate BLANK array in ZONE and ZONED
FORK = 1 TO 1g2: ZONE(L, K) = ZONE(L, K) + BLANK1 (K): NEXT K
FOR K = 1 TO 1lg2: ZONE(NOZP, K) = 20NE(NOZP, K) + BLANKI1 (K):

----> NEXT K
FOR K = 1 TO 1g2: ZONED(L, K) = ZONED(L, K) + BLANK1l (K): NEX
-===>T K
FOR K = 1 TO 1lg2: ZONED(NO2P, K) = 2ZONED(NOZP, K) + BLANK1 (K
~===>): NEXT K
IF EOF(7) THEN EXIT DO
LoOoP
CALL PRNZONE (ZONE())
CIOSE 7, 8
PRINT LOGS (SB$, " FINISHED SEARCH"); EOF(1)
'CALL FIN '‘Close FILES
LOOP
OPEN "ZNETOT" + LTRIMS (STRS (IAID)) + ".PR1" FOR OUTPUT AS #8
PRINT #8, LEFT$(DATES$, 5) + " " + LEFT$(TIME$, 5); SPC(10); "Numb
~=-==>@r of Files= "; nof
PRINT #8, FLSTRNG$
PRINT #8, ‘
CALL PRNZONE (ZONED())
CLOSE
PRINT AAAAS
Y et o s s o s 5 a8 e 6 e e weracseeeaseaeeceeess s eesssavecseesecsearees s s s
i
END ' MAIN PROGRAM



SUB FILBLNK1
RA LT LT

\
\
\
'Parameters....... Ceeean \
'Other input data....... \
'Input files............ \
'Output files........... \
'Other output data...... \
\
\
\
\

THRNENRRN RN
SHARED IAID AS INTEGER
SHARED ISEQNUM, IRCNOA, IRCNOEND, ISWTCHNO, ITYPENOA, ITYPENOB, T
---->YPEA$, TYPEBS$
SHARED IDA$, IDB§, ISEQT, ZONEA$, ZONEB$, AIDONA$, AIDONB$, SPEED
---->A$, SPEEDBS$
SHARED IOVERLAPT, DIST, HEADA$, HEADBS, ICNTA, ICNTB
SHARED BLANKI1 ()
SBS§ = " (FILBINK1 "
FOR I = 1 TO 1g2: BLANK1(I) = O!: NEXT I
I = ISWTCHNO: IF I > NOCCS THEN I = NOCCS 'Choose # of Scans
IF I < 1 THEN PRINT LOGQ(SB$, "ILLEGAL CCS ORDER < 1 "), I: STOP
J=1g1 * (I - 1) + 1
BLANK1 (J) = 1: BLANK1(J + 1) = ISEQT: BLANK1(J + 2) = BLANK1 (J +
-===>1) * BLANK1(J + 1)
BLANK1 (J + 3) = DIST: BLANK1(J + 4) = DIST * DIST
J = (NOCCS * 1gl) + 1
BLANK1 (J) = 1: BLANK1(J + 1) = ISEQT: BLANK1(J + 2) = BLANK1(J +
-=--=>1) * BLANK1(J + 1)
BLANK1 (J + 3) = DIST: BLANK1(J + 4) = DIST * DIST

END SUB ' FILBLNK1
SUB FINDTGTPL (L)
THNNRENRENY

'"PUIPOS@®. .. ..o vieenrens \
' \
' \
‘'Parameters............. \
'Other input data....... \
'Input files............ \
'‘Output files........... \
'Other output data...... \
! \
'Function calls......... \
'Subroutine calls....... \
'Comments............... \

C-95



THERBRARNNG
SHARED IAID AS INTEGER
SHARED ISEQNUM, IRCNOA, IRCNOEND, ISWTCHNO,

ITYPENOA, ITYPENOB, T
---->YPEAS$, TYPEB$

SHARED IDAS, IDBS, ISEQT, ZONEAS$, ZONEBS, AIDONAS, AIDONBS, SPEED

---->A$, SPEEDBS$

SHARED IOVERLAPT, DIST, HEADAS, HEADBS, ICNTA, ICNTB
SHARED ITGTN({)
Jl = 7: J2 =7
SELECT CASE ITYPENOA

CASE
Jl =
CASE
Jl =
CASE
Jl =
CASE
Jl =
CASE
Jl =
CASE
Jl =
CASE
Jl =

10

1

15

2

20, 28, 32, 33, 34, 35, 36, 38, 39
3

50

4

51

s

52, 53, 55, 56
6

ELSE

7

END SELECT
SELECT CASE ITYPENOB

CASE
J2 =
CASE
J2 =
CASE
J2 =
CASE
J2 =
CASE
J2 =
CASE
J2 =
CASE
J2 =

END SELECT |
AND ITYPENOA = 55 AND LEFT$ (IDA$, 2) = "OM" THEN J1 =4

IF J1 = 6

10

1

15

2

20, 28, 32, 33, 34, 35, 36, 38, 39
3

50

4

51

5

82, 53, 55, 56

6

ELSE

7.

'AC

' TAG

' SLGR

'OM

'FNL

'OTH, LINE,LIST OR OM

'SHOULD BE EMPTY

'‘AC

'TAG

' SLGR

'OM

'FNL

'OTH, LINE,LIST OR OM

'SHOULD BE EMPTY

IF J2 = 6 AND ITYPENOB = 55 AND LEFTS$ (IDB§, 2) = "OM" THEN J2 = 4

IF J1 = 7

OR J2 = 7 THEN

L =16
PRINT ISEQNUNM; TYPEAS; TYPEB$

ELSE

L = ITGTN(J1l, J2)

END IF

IF L = 4 AND IDAS = IDBS THEN L = 3

' FINDTGTPL

------------------



SUB INIT (FILENAMES, FILENAME1S)

RITIIZ 221
'PUYPOS@. . . .o cvscoruse ..\ Initialize parameters on both circular
--==>buffers

! \ Initialize sums to zero. Let user choose partic-

! \ ular run for analysis. Determine aid type for

' \ subsequent branching. Open FILESCN$, FILEDATS,

' \ FILEACP$ and store their lengths.

' PRArameters. ... ..o 000 \ none

'Other input data....... \

'Input files............ \ FILESCNS, FILEDATS, FILEACPS

‘Output files........... \

'Other output data......\ File names & unit #'s. Initialized vari
---=>ables, sums

' \ and pointers and the branch variable IAID

‘Function calls......... \ LOG$

'Subroutine calls....... \ none

'COmMMBNES. . v cc e \ I don't think I'm using this BOP stuff.

XYTITL2L ]

SHARED IAID AS INTEGER
SHARED ZONE(), TGTS8(), SLOT()
SHARED BLANKI1 ()

SBS = " (INIT "

SELECT CASE MIDS (FILENAME1S, 5, 1)
CASE " M"
IAID = 1
CASE "D"
IAID = 2
CASE "G"
IAID = 3
CASE 8"
IAID = 4
CASE ELSE
IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOGS (SB$, "CASE FROM FILENAME MUST BE MN,D
--==>C,GR or SL"): PRINT : STOP
IAIDl = VAL (MID$ (FILENAME1S, 7, 1))
IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOGS (SB$, "CASE FROM FILE
-—-—<>NAME MUST BE 170 OR 210"): PRINT : STOP
IAID = IAID * 10 + IAID1: PRINT IAID
FOR J = 1 TO 1g2: FOR I = 1 TO NOZP: ZONE(I, J) = 0: NEXT I: NEXT

————>J
FOR J = 1 TO 1g2: FOR I = 1 TO NOTP: TGTS(I, J) = 0: NEXT I: NEXT
———=>J
SELECT CASE IAID
CASE 11, 12 ‘Manual's
CASE 21, 22 'DICE
CASE 31, 32 * GRAPHIC

Cc-97



CASBE 41, 42 'SLOTS
FOR J = 1 TO 3: FOR I = 1 TO 6: SLOT(I, J) = O0: NEXT I: NEXT

————D>J
CASE ELSE
PRINT LOGS$ (SB§, "ILLEGAL AID "), IAID: STOP
END SELECT
END SUB ' INIT
SUB PRNZONE (ZONE())
THERRNARNN Y
'PUrpPOS®. . ... .00 vnen.. \
' \
! \
'Parameters............. \
'Other input data....... \
'Input files............ \
'Output files........... \
'Other output data...... \
! \
'Function calls......... \
'Subroutine calls....... \
'Comments............... \
THENRERNA N
SHARED ZNE$ (), TGTS$(), SLOT$()
AlS = v §§ @#v 'TBAR'S
A28 = n  § #n 'DBARS
A38 = " HRUNNE BRNNE NUNE BUNE BUNNNET 'N's
A4S = v HENE. 4 RUR_ N BE_ B DO 8 BRUR #v 'T's SECONDS
AS8 = " HEE. 8 0.8 H. 0 .8 BEN. 4 'D INCHES
AGS = " HEENND BRRURE BRUUE BURUE BRERREY
Bl$ = SPACE$ (14) + "Zone Pairs by order of cross check scan"

'B2§ = SPACE$ (10) + "Average Duration" + SPACE§ (7) + "Average dis
---=>tance A/B" + SPACES (9) + "# OF ccs"
B2$ = SPACES$ (10) + "Average Duration" + SPACE$ (12) + "Average dis

~-—-=->tance A/B"
'B3§ = "pairs 1 2 3 4 ALL 1 2 3 4 ALL"
B3$ = "pPajirs 12 3 4 ALL 1 2 3 4 ALL "

PRINT #8, B1$: PRINT #8, B2$: PRINT #8, B3$
FOR L = 1 TO NOZP
PRINT #8, USING "\ \"; ZNES$(L):;
FOR I = 1 TO 1g2 STEP 1lg1
X = 0: IF ZONE(L, I) <> O THEN X = ZONE(L, I + 1) / ZONE(L,

--==>I) / 30
PRINT #8, USING A2$; X:
NEXT I
PRINT #8, " ",

FOR I = 1 TO 1g2 STEP 1g1

X = 0: IF ZONE(L, I) <> O THEN X = ZONE(L, I + 3) / ZONE(L,
-===>I)

PRINT #8, USING A2§$; X;

C-98



NEXT I
PRINT #8,
NEXT L
PRINT #8,
'B4§ = SPACE$ (10) + "Std Dev Duration" + SPACES$(7) + "Std Dev dis
===->tance A/B" + SPACE$(9) + "Time, Sec's"
'B5§ = "pairs 1 2 3 4 ALL 1 2 3 4 ALL"
B4$ = SPACE$(10) + "Std Dev Duration" + SPACES$ (12) + "Std Dev dis
~-=->tance A/B"
B58 = "pPairsl 2 3 4 ALL 1 2 3 4 ALL"
PRINT #8, B4§: PRINT #8, B5$
FOR L = 1 TO NOZP
PRINT #8, USING "\ \"; ZNE§(L):;
FORI = 1 TO 1g2 STEP 1g1l 'STD SEQUENCE TIME
IF ZONE(L, I) > 1 THEN
X = ZONE(L, I + 1) / ZONE(L, I) / 30
Y= SQR(ZONE(L, I + 2) / 900 / (ZONE(L, I) - 1) - X + X)
ELSE
Y =0
END IF
PRINT #8, USING A2$; Y;
NEXT I
PRINT #8, SPC(5):;
FOR I = 1 TO 1g2 STEP 1lgl 'STD DISTANCE A/B
IF 2O0NE(L, I) > 1 THEN
X = ZONE(L, I + 3) / ZONE(L, I)
Y = SQR(ZONE(L, I + 4) / (ZONE(L, I) - 1) - X * X)
ELSE
Y =0
END IF
PRINT #8, USING A2$; Y;
NEXT I
PRINT #8,
NEXT L
PRINT #8,
PRINT #8, SPACE$(14) + "# OF CCS" + SPACES$ (29) + "Time, Sec's"
PRINT #8, " 1 2 3 4 ALL 1 2
-—==> 3 4 ALL"
FOR L = 1 TO NOZP
PRINT #8, USING "\ \"; ZNE$(L);
PRINT #8, USING A3§; ZONE(L, 1); ZONE(L, 6); ZONE(L, 11); ZoO
---=->NE(L, 16); ZONE(L, 21):
PRINT #8, " ",
PRINT #8, USING A6$; ZONE(L, 2) / 30; ZONE(L, 7) / 30; ZONE(
-=-->L, 12) / 30; ZONE(L, 17) / 30; ZONE(L, 22) / 30;
PRINT #8,
NEXT L

----------------------------------------------------------------

----------------------------------------------------------------

SUB READSEQ

C-99



THARNRRRREY

TPUZPOS@. . . e s eomcreenns \
! \
' \
' PArameters. . ..o e \
'Other input data....... \
‘Input files..........-: \
'output files..........- \
'Other output data...... \
! \
‘punction calls......... \
'Subroutine calls....... \
1Comments. ....cocov e \
FYTIZT 2222

SHARED IAID AS INTEGER

SHARED ISEQNUM, IRCNOA, IRCNOEND, ISWTCHENO, ITYPENOA, ITYPENOB, T
---->YPEA$, TYPEB$

SHARED IDAS, IDB$, ISEQT, ZONEAS, ZONEB$, AIDONA$, AIDONB$, SPEED

---->A$, SPEEDB$

SHARED IOVERLAPT, DIST, HEADAS, HEADBS, ICNTA, ICNTB

LINE INPUT #7, A$

ISEQNUM = VAL (MID§ (A$, 3, 4))

IRCNOA = VAL (MID$ (A$, 9, 4))

IRCNOEND = VAL (MIDS (A§, 14, 4))

ISWTCHNO = VAL (MID$ (A$, 20, 2))

ITYPENOA = VAL (MID$ (A$, 24, 2))

ITYPENOB = VAL (MIDS$ (A$, 27, 2))

TYPEAS = MIDS (A$, 31, 4)

TYPEBS = MID$ (A$, 36, 4)

IDAS = MIDS (A§, 42, 3)

IDB$ = MIDS§ (A$, 46, 3)

ISEQT = VAL (MID$ (A§, 51, 4))

ZONEAS = MID$ (A$, 57, 1)

IF (ITYPENOA = 20 OR ITYPENOA = 28) THEN ZONEA$ = "1"

ZONEBS = MID$ (AS$, 59, 1)

IF (ITYPENOB = 20 OR ITYPENOB = 28) THEN ZONEB$ = "1"

AIDONAS = MID$ (A§, 62, 1)

AIDONBS = MID§ (A$, 64, 1)

SPEEDAS = MID$ (A$, 67, 1)

SPEEDB§ = MID$§ (A$, 69, 1)

TOVERLAPT = VAL(MIDS (A$, 72, 4))

DIST = VAL(MIDS (A$, 78, 4))

HEADAS = MID§ (A$, 84, 3)

HEADBS = MIDS$ (A§, 88, 3)

ICNTA = VAL(MIDS (A$, 93, 4))

1CNTB = VAL (MID$ (A§, 98, 4))

XXX1$ = " H44 YT III R LA
xxxzs---\\\\\\\\ #hidn
XXX3§ = "+ 1 v

XXX4$ =" 1! TIT AT L

xxx58 = " N\ \ \ HEEE BN

! PRINT #8, USING XXX1$; ISEQNUM; IRCNOA; IRCNOEND; ISWTCHNO;
——--> ITYPENOA; ITYPENOB;

C-100



' PRINT #8, USING XXX28; TYPEAS; TYPEBS; IDAS; IDBS; ISEQT;
' PRINT #8, USING XXX3$; ZONEAS; ZONEB$; AIDONAS; AIDONBS;

' PRINT #8, USING XXX4§; SPEEDAS; SPLEDB$; IOVERLAPT; DIST;
' PRINT #8, USING XXX5$; HEADAS; HEADBS$; ICNTA; ICNTB

L}

' LI . L] L] [} ® o &8 e s » L] * % 9 0 . LN ) *® 8 & & » 8 85 8 & 8 0 . » o LI 3
END SUB ' READSEQ

C-101



'9/29/92 This program was modified. the old program is on file SE
~===>Q20LD.bas
11 target type and 4 target pairs wvere added.
DEFINT I-N
DECLARE SUB FINDTGTPL (LS%)
DECLARE SUB INIT (FILENAMES, FILENAME1$)
DECLARE SUB FILBLNK1l ()
DECLARE FUNCTION LOG$ (8B§, A$)
DECLARE SUB PRNTGTS (ZONE! ())
DECLARE SUB READSEQ ()
CONST NOCCS = 4, 1gl = 5, 1g2 = (NOCCS + 1) * 1lgl
'Max order CCS's, # of accumulators each- N, t, t*t, D, D*D
CONST NOZ = 4, NOZP = 10, NOTGT = 7, NOTP = 20'# of rows in zone
~---=->pair array,
't # of target pairs...
DIM ISEQNUM, IRCNOA, IRCNOEND, ISWTCHNO, ITYPENOA, ITYPENOB, TYPE
---->A$, TYPEBS
DIM IDA$, IDB$, ISEQT, ZONEAS$, ZONEB$, AIDONAS$, AIDONBS, SPEEDAS,
----> SPEEDBS$
DIM IOVERLAPT, DIST, HEADA$, HEADB§, ICNTA, ICNTB
DIM AAAAS
DIM IAID AS INTEGER
DIM BLANK1 (1g2)
DIM ZNES$ (NOZP), TGTSS$ (NOTP), SLOTS$ (6)
DIM ZONE (NOZP, lg2), TGTS(NOTP, 1g2), SLOT(S6, 15)
DIM ZONED (NOZP, 1lg2), TGTSD(NOTP, 1g2)
DATA n1/1u . ||1/2u , "1/3" ’ n2/3u , 112/2n , n1/4|| ’ n3/3u ' "OTH", "BTBK", "ALL"™
FOR I = 1 TO NOZP: READ ZNE§(I): NEXT I
DATA 1,2,3,6,2,5,4,8,3,4,7,8,6,8,8,8
FOR I = 1 TO NOZ: FOR J = 1 TO NOZ: READ I2ZN(I, J): NEXT J: NEXT
-——->1
DATA "ALL","AC/AC","AC/ONNTG",“AC/OTHTAG“,"TAG/TAG","AC/OM","TAG/
—=—==>0M", "AC/FNL"
DATA "TAG/!NL","AC/AID","TAG/AID","AID/AID“,"AC/OTH","TAG/OTH","O
-~-==>TH", "&/AC"
DATA "&/TAG","&/AID","&/OTH", "NOTA"
FOR I = 1 TO NOTP: READ TGTS$(I): NEXT I
DIM ITGTN (NOTGT, NOTGT)
DATA 2,4,10,6,8,13,16,4,5,11,7,9,14,17,10,11,12,15,15,15,18,6,7,1
---->5,15,15,15,19
DATA 8,9,15,15,15,15,19,13,14,15,15,15,15,19,16,17,18,19,19,19,18
FOR I = 1 TO NOTGT: FOR J = 1 TO NOTGT: READ ITGTN(I, J) : NEXT J:

~---> NEXT I
DATA "SL/XX", "AC/OWNSL" ,"AC/OTHSL" , "TAG/OWNSL", "TAG/OTHSL", "SL/OT
————2H"
FOR I = 1 TO 6: READ SLOT$(I): NEXT I
! *++ FILE NUMBERS **
! #1 FILE INDEX #2 #3
' #4 #5 #6
! #7 ccs #8 PR2 #9
1

SPSINV! = 1 / 30: SB§ = " (CNTSEQ 1 "

c-102



AAAAS = " Finished-End of list file"

HEADINGS = " SEQ# STRT-FNSE TOG TYPE TYPE TGTID TIM
-=w==>E ZONE AID SPD LPOV DSTAB"

INPUT " Enter full file descriptor for Index file ", INDEX$

OPEN INDEXS FOR INPUT AS #1

nof = 0

DO WHILE NOT EOF (1)
INPUT #1, FILENAMES$
IF LEN(FILENAME$) <= 4 THEN EXIT DO
FILENAME1$ = RIGHT$ (UCASES (FILENAMES), 8)
CALL INIT(FILENAMES, FILENAME1$)
FLSTRNGS = FLSTRNG$ + FILENAME1$
OPEN FILENAMES + ".CCS8" FOR INPUT AS #7
OPEN FILENAME$ + ".PR2" FOR OUTPUT AS #8

PRINT #8, LEFT$(DATES$, 5) + " " + LEFTS (TIMES$, 5); 8PC(24);
---->FILENAME1§

PRINT LEFTS (DATES, 5) + " " + LEFTS (TIMES, 5); SPC(24); FILE

---->NAME1$§

PRINT LOGS (SBS, " Start"); EOF(1)

nof = nof + 1

DO

CALL READSEQ

CALL FILBLNK1 ' Blankl(l X Lg2) contains increment in

' appropriate positions
CALL FINDTGTPL(L) ' L = ordinal of target pair
'Accumulate BLANK array in TGTS and TGTSD
FORK = 1 TO 1g2: TGTS(L, K) = TGTS(L, K) + BLANK1 (K) : NEXT K
FORK = 1 TO 1lg2: TGTS(l1, K) = TGTS(1, K) + BLANKI (K): NEXT K
FOR K = 1 TO 1g2: TGTSD(L, K) = TGTSD(L, K) + BLANKI1 (K) : NEX

-===>T K
FOR K = 1 TO 1lg2: TGTSD(1l, K) = TGTSD (1, K) + BLANK1 (K): NEX
-=-==>T K
IF EOF(7) THEN EXIT DO
LOOP
CALL PRNTGTS (TGTS())
CLOSE 7, 8
PRINT LOGS (8B$, " FINISHED SEARCH"); EOF(1)
'CALL FIN ‘Close FILES
LOOP
OPEN "c:\fasa\ZNETOT" + LTRIMS (STRS (IAID)) + ", PR2" FOR OUTPUT AS
-———=> #8
PRINT #8, LEFT$ (DATE§, 5) + " " + LEFTS$ (TIME$, 5); SPC(10); "Numb

———->er of Files= "; nof, FLSTRNGS$
CALL PRNTGTS (TGTSD())

----------------------------------------------------------------

SUB FILBLNK1
THRRAER RN

Cc-103



'Purpose. ......... oo \ Fill Blankl(LG2) array. It contains LG

-—-=2>1 X
! \ (ACCS + 1) buckets. LGl is the number of ac-
' \ cumulators: 1, t, t*t, d d*d. One set for each

'Parameters............. \ Order of CCS8 and one set for total
'‘Othexr input data....... \ ISWTCHNO= order of CCS
"Input files............ \
'Output files........... \
'Other output data...... \
1
\
'Function calls......... \
'Subroutine calls....... \
'‘Comments. .............. \
THHNRRRNR Y

SHARED IAID AS INTEGER
SHARED ISEQNUM, IRCNOA, IRCNOEND, ISWTCHNO, ITYPENOA, ITYPENOB, T
---->YPEA$, TYPEBS$
SHARED IDA$, IDB§, ISEQT, ZONEA$, ZONEB$, AIDONAS, AIDONBS, SPEED
~~-==>A$, SPEEDBS$
SHARED IOVERLAPT, DIST, HEADAS, HEADBS§, ICNTA, ICNTB
SHARED BLANK1 ()
8B$ = " (FILBLNK1 *
FOR I = 1 TO 1g2: BLANK1(I) = 0O!: NEXT I
I = ISWTCHNO: IF I > NOCCS THEN I = NOCCS 'Choose # of Scans
IF I < 1 THEN PRINT LOG$ (SB$, "ILLEGAL CCS ORDER < 1 "), I: STOP
J= 1gl * (I - 1) + 1
BLANK1 (J) = 1: BLANK1(J + 1) = ISEQT: BLANK1(J + 2) = BLANK1(J +
-==-=>1) * BLANK1(J + 1)
BLANK1 (J + 3) = DIST: BLANK1(J + 4) = DIST * DIST
J = (NOCCS * 1gl) + 1
BLANK1 (J) = 1: BLANK1(J + 1) = ISEQT: BLANK1(J + 2) = BLANK1(J +
-===>1) * BLANK1(J + 1)
BLANK1(J + 3) = DIST: BLANK1(J + 4) = DIST * DIST

----------------------------------------------------------------

----------------------------------------------------------------

END SUB 'FILBLNK1

SUB FINDTGTPL (L)

I 2E]]

'Purpose. ... ...... 0000 .. \ FIND L THE ORDINAL OF THE APPROPRIATE P
---=>AIR

' \

! \

‘'Parameters............. \

'Other input data....... \

'Input files............ \

‘Output files........... \

'Other output data...... \

! \

'Function calls......... \

'Subroutine calls....... \

'‘Comments............... \



THERNNRERES
SHARED IAID AS INTEGER
SHARED ISEQNUM, IRCNOA, IRCNOEND, ISWTCHNO, ITYPENOA, ITYPENOB, T
---->YPEA$, TYPEB$
SEARED IDAS, IDB$, ISEQT, ZONEAS$, ZONEB$, AIDONAS$, AIDONBS, SPEED
---->A$, SPEEDBS$
SHARED IOVERLAPT, DIST, HEADA$, HEADB§, ICNTA, ICNTB
SHARED ITGTN ()
Ji = 7; J2 = 7
SELECT CASE ITYPENOA
CASE 10 'AC
Jl = 1
CASE 15 ' TAG
Jl = 2
CASE 20, 32, 33, 34, 35, 36, 16, 17 'Slot,graph, tag "on"
'Added case 16 and 17 on 10/1/92 to make pairs containing tag sho
--==>w the
'difference whether the count is activated "Dice on" or not. If o
---=>n, the
'tag will be counted as an aid
Jl =3
CASE 28, 38, 39 'SLAC, GRAC, SPAC
Jl = 7
CASE 50 'OM
Jl = 4
CASE 51 ' FNL
Jl =5
CASE 52, 53, 55, 56 'OTH, LINE,LIST OR OM
Jl = 6
CASE ELSE 'SHOULD BE EMPTY
Jl = 8
END SELECT
SELECT CASE ITYPENOB
CASE 10 'AC
J2 = 1
CASE 15 'TAG
J2 = 2
CASE 20, 32, 33, 34, 35, 36, 16, 17 '8lot,graph, tag "on"
'Added case 16 and 17 on 10/1/92 to make pairs containing tag sho
-=-=-->w the
'difference whether the count is activated "Dice on" or not. If o
--=-=>n, the
'tag will be counted as an aid
J2 = 3
CASE 28, 38, 39 ' SLAC, GRAC,SPAC
J2 = 7
CASE 50 'OM
J2 = 4
CASE 51 7 'FNL
J2 = 5
CASE 52, 53, 55, 56 'OTH, LINE,LIST OR OM



J2 = 6
CASE ELSE 'SHOULD BE EMPTY
J2 = 8
END SELECT
IF J1 = 6 AND ITYPENOA = 55 AND LEFT$ (IDAS, 2) = "OM" THEN Jl = 4
IF J2 = 6 AND ITYPENOB = 55 AND LEFT$ (IDB$, 2) = "OM" THEN J2 = 4
IF J1 = 8 OR J2 = 8 THEN
L = 20
PRINT ISEQNUM; TYPEAS; TYPEBS
ELSE
L = ITGTN(J1l, J2)
END IF
IF L = 4 AND IDA§ = IDB$ THEN L = 3

----------------------------------------------------------------

SUB INIT (FILENAMES, FILENAME1S$)

PHBNRRERR Y
'PUTPOS@. . ...t s sssearons \ Initialize parameters on both circular
—--—-=->buffers

! \ Initialize sums to zero. Let user choose partic-

! \ ular run for analysis. Determine aid type for

! \ subsequent branching. Open FILESCN§, FILEDATS,

' \ FILEACP$ and store their lengths.

‘'Parameters. ............ \ none

'‘Other input data....... \

'Input files............ \ FILESCN$, FILEDATS, FILEACPS$

'Output files........... \

'Other output data...... \ File names & unit #'s. Initialized vari
---=>ables, sums

' \ and pointers and the branch variable IAID

‘Function calls......... \ LOGS

'Subroutine calls....... \ none

Comments. . ...t \ I don't think I'm using this BOP stuff.

TRHENRERR NN

SHARED IAID AS INTEGER
SHARED ZONE (), TGTS(), SLOT()
SHARED BLANK1 ()

SB$ = " (INIT "

----------------------------------------------------------------

SELECT CASE MID$ (FILENAME1$, 5, 1)
CASE "M"
IAID = 1
CASE "D"
IAID = 2
CASE "G"
IAID = 3
CASE "8"
IAID = 4
CASE ELSE

C-106



IAID = 9
END SELECT
IF IAID = 9 THEN PRINT LOG$ (SB$, "CASE FROM FILENAME MUST BE MN,D
-====>C,GR or SL"): PRINT : STOP
IAID1 = VAL(MID$ (FILENAMEL1S, 7, 1))
IF IAID1 <> 1 AND IAID1 <> 2 THEN PRINT LOG$ (SB§, "CASE FROM FILE
--==>NAME MUST BE 170 OR 210"): PRINT : STOP
IAID = IAID % 10 + IAID1: PRINT IAID
FOR J = 1 TO 1g2: FOR I = 1 TO NOZP: ZONE(I, J) = O: NEXT I: NEXT
-——=2>J
FOR J = 1 TO 1g2: FOR I = 1 TO NOTP: TGTS(I, J) = O: NEXT I: NEXT
-——->J
SELECT CASE IAID
CASE 11, 12 'Manual's
CASE 21, 22 'DICE
CASE 31, 32 'GRAPHIC
CASE 41, 42 'SLOTS
FOR J = 1 TO 3: FOR I = 1 TO 6: SLOT(I, J) = O0: NEXT I: NEXT
-—==>J
CASE ELSE
PRINT LOGS$ (SB§, "ILLEGAL AID "), IAID: STOP
END SELECT

----------------------------------------------------------------

----------------------------------------------------------------

SUB PRNTGTS (TRGTS())
THHRRRERRN Y

\
\
\
'Parameters............. \
'Other input data....... \
'Input files............ \
'Output files........... \
'‘Other output data...... \
\
\
\
\

'‘Comments...............

THERNENER Y

SHARED 2ZNE$ (), TGTSS$(), SLOTS()

Al$ L I X L 'TBAR'S

A28 LI E L 'DBARS

A3$ TORREREE RERRE RS BN BRERNET 'N's,

AdS ORERRLE BRI RN BELR RNER W 'T's SECONDS

ASS LR 1 1 N BE 1 DR BN S BN B A 113 L ‘D INCHES

A6S TORREREE RERERD BRERE RERER HRERER

B1$ SPACES (19) + "Target Pairs by order of cross check scan"

B2§ SPACE$ (15) + "Average Duration" + SPACE$(12) + "Average dis
---->tance A/B"

B33 = "Pairs 1 2 3 4 ALL1 2 3 4 ALL "

c-107



PRINT #8, B18: PRINT #8, B2§: PRINT #8, B3$
FOR L = 1 TO NOTP
PRINT #8, USING "\ \"; TGTS$(L);
FOR I = 1 TO lg2 STEP 1lgl
X = 0: IF TRGTS8(L, I) <> O THEN X = TRGTS(L, I + 1) / TRGTS(

---=>L, I) / 30
PRINT #8, USING A2$; X;
NEXT I
PRINT #8, " ";

FOR I = 1 TO 1g2 STEP lgl
X = 0: IF TRGTS(L, I) <> O THEN X = TRGTS(L, I + 3) / TRGTS(

--==->L, I)
PRINT #8, USING A2§; X;
NEXT I
PRINT #8,
NEXT L
B4$ = SPACE$ (15) + "Std Dev Duration” + SPACES$ (12) + "Std Dev dis
---=->tance A/B"
B = "Pairsl 2 3 4 ALL 1 2 3 4 ALL"
PRINT #8, B4$§: PRINT #8, B5$
FOR L = 1 TO NOTP
PRINT #8, USING "\ \"; TGTS$ (L)
FORI = 1 TO lg2 STEP 1lgl 'STD SEQUENCE TIME

IF TRGTS(L, I) > 1 THEN
X = TRGTS(L, I + 1) / TRGTS(L, I) / 30
Y = SQR(TRGTS(L, I + 2) / 900 / (TRGTS(L, I) - 1) - X *
-———=> X)
ELSE
Y=0
END IF
PRINT #8, USING A2§; Y;
NEXT I
PRINT #8, SPC(5);
FOR I = 1 TO 1lg2 STEP 1lgl 'STD DISTANCE A/B
IF TRGTS(L, I) > 1 THEN
X = TRGTS(L, I + 3) / TRGTS(L, I)
Y = SQR(TRGTS(L, I + 4) / (TRGTS(L, I) - 1) - X * X)
ELSE &
Y =0
END IF
PRINT #8, .USING A2§; Y;
NEXT I
PRINT #8,
NEXT L
PRINT #8, SPACE$(19) + "# OF CCs" + SPACES$ (29) + "Time, Sec's"
PRINT #8, " 1 2 3 4 ALL 1
_———> 2 3 4 ALL"

a3
I
,

FOR L = 1 TO NOTP
PRINT #8, USING "\ \"; TGTS$(L);
PRINT #8, USING A3$; TRGTS(L, 1); TRGTS(L, 6); TRGTS(L, 11);
—=—-> TRGTS(L, 16); TRGTS(L, 21);
PRINT #8, " ";
PRINT #8, USING A6$; TRGTS(L, 2) / 30; TRGTS(L, 7) / 30; TRG

c-108



~--=>T8(L, 12) / 30; TRGTS(L, 17) / 30; TRGTS (L, 22) / 30;
PRINT #8,
NEXT L
]

----------------------------------------------------------------

END 8UB ' PRNTGTS

SUB READSEQ
S LTI Y

‘Comments............. .. \

THERRN NNy

SHARED IAID AS INTEGER

SHARED ISEQNUM, IRCNOA, IRCNOEND, ISWTCHNO, ITYPENOA, ITYPENOB, T
---->YPEA$, TYPEBS

SHARED IDA$, IDB$, ISEQT, ZONEA$, ZONEB$, AIDONAS, AIDONBS$, SPEED

---->A$, SPEEDB$

SHARED IOVERLAPT, DIST, HEADA$, HEADB$, ICNTA, ICNTB

LINE INPUT #7, A$

ISEQNUM = VAL (MIDS$ (AS, 3, 4))

‘IRCNOA = VlL(MIDS(AS, 9, 4))

IRCNOEND = VHL(MID$(A$, 14, 4))

ISWTCHNO = VRL(MIDS(AS, 20, 2))

ITYPENOA = VAL(MIDS(AS, 24, 2))

ITYPENOB = VAL (MIDS$ (AS, 27, 2))

TYPEA$ = MIDS$ (AS, 31, 4)

TYPEB$ = MIDS (A$, 36, 4)

IDA§ = MIDS$ (AS, 42, 3)

IDB§ = MIDS (AS, 46, 3)

ISEQT = VAL (MIDS (A$, 51, 4))

ZONEAS = MIDS$ (AS, 57, 1)

ZONEB§ = MID$ (A$, 59, 1)

AIDONA$ = MIDS (A$, 62, 1)

AIDONBS = MID§ (AS, 64, 1)

SPEEDAS = MIDS$ (A$, 67, 1)

SPEEDBS = MIDS$ (AS, 69, 1)

]

'Added 10/1/92 to make Pairs containing tag show the difference

'whether the count is activated "Dice on" or not. If on, the

'tag will be counted as an aid

IF (IAID = 21 OR IAID = 22) AND ITYPENOA = 15 THEN

IF AIDONAS = "1" THEN ITYPENOA = 16

C-109



IF SPEEDA$§ = "1" THEN ITYPENOA = 17

END IF

IF (IAID = 21 OR IAID = 22) AND ITYPENOB = 15 THEN
IF AIDONBS = "1" THEN ITYPENOB = 16
IF SPEEDBS = "1" THEN ITYPENOB = 17

IOVERLAPT = VAL (MID$ (A$, 72, 4))
DIST = VAL (MIDS (A$, 78, 4))
HEADAS = MIDS (A$, 84, 3)

HEADBS$ = MID$ (A§, 88, 3)

ICNTA = VAL(MIDS (A$, 93, 4))

ICNTB = VAL(MID§ (A§, 98, 4))

XNK1§ = " HBRE HREE hade 0 IR LE
xx2$ =" N VYV VA 11LN
XXx3§ =" t t 11

XXXA$ = " 1 1 WEAE R

0XSS = "\ N N\ R whae

' PRINT #8, USING XXX1$; ISEQNUM; IRCNOA; IRCNOEND; ISWTCHNO;
———=> ITYPENOA; ITYPENOB;

' PRINT #8, USING XXX2$; TYPEAS; TYPEB$; IDAS$; IDBS; ISEQT;

' PRINT #8, USING XXX3$; ZONEAS; ZONEB$; AIDONAS; AIDONBS;

! PRINT #8, USING XXX4$; SPEEDAS; SPEEDBS; IOVERLAPT; DIST;

! PRINT #8, USING XXXS$; HERDAS; HEADBS; ICNTA; ICNTB

c-110



TYPE REGTYPE

AX AS INTEGER
BX AS INTEGER
CX AS INTEGER
DX AS INTEGER
BP AS INTEGER
SI AS INTEGER
DI AS INTEGER

FLAGS AS INTEGER
DS AS INTEGER
ES AS INTEGER
END TYPE
DIM INREG AS REGTYPE
DIM OUTREG AS REGTYPE
DIM ATLX1(1 TO 6), ATLY1 (1 TO 6)
CPI! = 204.8:
DOTSIZE! = .01
EDGE = 120: HSTEP = 320: VSTEP = 160: ATLXO = 100: ATLYO = 20
ATLX1 (1) = ATLXO: ATLX1 (2) = ATLXO: ATLX1 (3) = ATLXO:
ATLX1 (4) = ATLXO + HSTEP: ATLX1(5) = ATLX0 + HSTEP: ATLX1(6) = AT
-—==>LX0 + HSTEP:
ATLY1 (1) = ATLYO: ATLY1(2) = ATLYO + VSTEP: ATLY1(3) = ATLYO + 2
——==>% VSTEP
ATLY1(4) = ATLYO: ATLY1(5) = ATLYO + VSTEP: ATLY1(6) = ATLYO + 2
—===>% VSTEP
TITLES = " Look Point Positions In Oculometer Coordinates"
T = O
ON ERROR GOTO NOSUCHFILE
OPEN "fleindxl" FOR INPUT AS #1
ON ERROR GOTO O

IF T% = 1 THEN PRINT ncan't find INDEX file :": END
LL = 0

SCREEN 12

cLs 1

LL = LL + 1

INPUT #1, FILENAMES$

IFFILENAMES = "" THEN PRINT "BLANK LINE INDEX FILE": EXIT DO

RUN$ = RIGHTS (FILENAMES, 8)

DATS$ = FILENAME$ + ".DAT"

' PRINT RUN$, DATS$

T4 = O

ON ERROR GOTO NOSUCHFILE

OPEN DAT$ FOR INPUT AS #2

ON ERROR GOTO 0

IF T% = 1 THEN PRINT "Can't find OCULOMETER DATA FILE :" +
———->DAT$: EXIT DO

CLOSE 2

OPEN "R", #2, DATS$, 8

FIELD #2, 2 AS A$, 2 AS B§, 2 AS c$, 2 AS D$

LENFLE® = LOF(2) / 8 'OK THE .DAT FILE IS OPEN FOR RAND

c-111



LOOP
CALL

--=->0M INPUT

BLX = -5: BLY = -5: TRX = §: TRY = 5 ' CORNERS OF THE WINDO
-~-=>W, INCHES

TLX1 = ATLX1(LL): TLY1l = ATLY1(LL)

BRX1 = TLX1 + EDGE: BRY1 = TLY1 + EDGE

WINDOW (BLX, BLY)-(TRX, TRY)

VIEW (TLX1, TLY1)-(BRX1, BRY1), , 1

X0! = 0
YO! = 0
LOCATE 2, 23
'PRINT TITLES

J% = 0
FOR I% = 1 TO LENFLE$
GET #2, I%

A% = CVI(A$): B% = CVI(BS): C% = CVI(C$): D% = CVI(D$)
IF (A% <> 0 OR B% <> 0 OR C% > 10) AND D% > 3 THEN
J% = J% + 1
X! = SFX! % A% + XO!: Y! = SFY! * B% + yo!
CIRCLE (X!, Y!), DOTSIZE
END IF
NEXT I%
LOCATE TLY1 / 16, TLX1 / 8
'ID$ = DATES + " » 4 LEFT$ (TIMES, §) + " " 4 RUN§ + »
-===> " 4+ STR$(J%)
ID$ = RUNS + " v 4 STR$ (J%)
PRINT IDS$

-----------------------------------------------------------

WHILE NOT EOF(1)
INTERRUPT (&R5, INREG, OUTREG) '&HS is print screen function

CLOSE 1
SCREEN O

END

NOSUCRFILE:

TV =

1

RESUME NEXT

C-112



OPEN "P.OUT" FOR OUTPUT AS #5

T™S = 0 !
ON ERROR GOTO NOSUCHFILE
OPEN "fleindex" FOR INPUT AS #2
ON ERROR GOTO O

IF T4 = 1 THEN PRINT "Can't find INDEX file :": END
INPUT #2, inmax$%, outmaxs

PRINT #5, : PRINT #5, : PRINT #5, v In-track trigger > "; in
---->max%, "Out-track trigger > "; outmax$: PRINT #5,
PRINT : PRINT : PRINT " In-track trigger > "; inmax$%, "Out-t
~——->rack trigger > "; outmax$%: PRINT

PRINT #5, " Run Time Rec # X Y
--=-=> PD Counts"
PRINT " Run Time Rec # X Y PD Counts"

DO
INPUT #2, FLE$
IF EOF(2) THEN END

IF FLE$ = "" THEN END
ID$ = LEFT$ (RIGHTS (FLE$, 12), 8)
T% = 0

ON ERROR GOTO NOSUCHFILE
OPEN FLE$ FOR INPUT AS #1
ON ERROR GOTO O
IF T& = 1 THEN PRINT "Can't find file :"; FLE$: GOTO LOOP1
CLOSE 1
OPEN "R", #1, FLE§, 8
FIELD #1, 2 AS A$, 2 AS B§, 2 As c$, 2 AS D§
LENFLES = LOF(l1) / 8
PRINT #5, : PRINT #5,6 " n. ID$
PRINT : PRINT " v. ID$
SUME& = O!
FOR I% = 1 TO LENFLES%
GET #1, I%
A% = CVI(A$): B% = CVI(BS§): C% = CVI(CS$): D% = CVI(D$)
MINUTES = SUM& \ 1800
DUMé& = SUM& - (1800& * MINUTE®S)
SECOND& = DUM& \ 30
SUME = SUML + D%
IF AS = O AND BS = 0 AND C% <= 10 THEN
IF D% > outmax$ THEN

PRINT #5, " ";

PRINT #5, ID$; " OUT “;

PRINT #5, USING "###"; MINUTES; SECONDS%;

PRINT #5, USING "#####¥¥_."; I%; A%; B%; C%; D%

PRINT " ";

PRINT ID$; " OUT “;

PRINT USING "###"; MINUTE%; SECONDS%;

PRINT USING "#######."; I%; A%; B%; C%; D%
END IF

ELSE
IF D% > inmax% THEN
PRINT #5, " ",

c-113



PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END IF
END IF
NEXT I%
CLOSE 1
LOOP1:
LooP
END
NOSUCHFILE:
Th = ]

RESUME NEXT

C-114

#8, ID§; " IN v
#5, USING "###"; MINUTES; SECONDS;

#5, USING "#¥#####."; IN; A%; B%; C%; D%
o " .

ID§; " IN v;

USING "###"; MINUTES; SECONDS;

USING "#####¥#."; I%; A%; BY; C%; D%



FUNCTION LOGS (SBS, AS)

LI ITTT)
'Purpose................ \ Tags message with time & source for log
~==-->ging.
'Parameters............ .\ 8BS is usually the subroutine name.
' \ A is the message string.
'Other input data....... \ none
‘Input files............ \ none
'Output files........... \ none
'Other output data...... \ The combined string, LOG$, with the sub
---=>routine name,
' \ date, time and message for logging.
'Function calls......... \ none
'S8ubroutine calls....... \ none
'Comments............... \ LOGS beeps
RALIITTTTY
LOG$ = 8BS + LEFTS(DATES, 5) + v n 4 LEFTS(TIMEs, 5) + w)yn 4 A$
BEEP
]
END FUNCTION 'LOG  'DUMMYPAGE$  ?r?;PAGE;EXIT;
FUNCTION LOGS$ (SBS, AS)
LI LITITY
'Purpose................ \ Tags message with time & source for log
~--->ging.
'Parameters............. \ 8BS is usually the subroutine name,
! \ A$ is the message string.
'Other input data....... \ none
'Input files.......... ..\ none
'Output files........... \ none
'Other output data...... \ The combined string, LOGS$, with the su
---=->broutine name,
' \ date, time and message for logging.
‘Function calls......... \ none
'S8ubroutine calls....... \ none
'Comments............... \ Exactly the same as LOG§ but no beep.
THENRNR RN
LOGSS = SBS + DATES + " v 4 LEFT$ (TIMES, 5) + ")" + A$ 'modified
-~==>1/5/93
4
el OISO SRS EMSSEERIELE
END FUNCTION 'LOGS ' DUMMY PAGE $ ?r?;PAGE;EXIT;
SUB GETXXA (FILENO%)
AL I TTT
'Purpose................ \ Reads a record from the appropriate fil
-=--->@ into XX
'Parameters............. \ FILENOS%
'Other input data..... e\

C-118



'Input €11@8..ccreerearr\ FILEMRGS
'Output €11@8. . cocrerer\

'other output data......\ X

'Fungtion calls...covee-\

' gubroutine calls.....-:\

'Ccmm.ntl...............\ This makes it easier to modify record f
-==-=2>0Irm.

THERRRRNRNS

'Read the array XX from a record on the FILEMRGS file.
SHARED XX AS FIXCOMB
INPUT #FILENOS, XX.TGTTYPEN, XX .TGTTYPEC, XX .FIXLNGTH, XX . PUPDIAM
-—==>, XX.TGTID, XX.DISTANCE, XX . FRAMENO, XX.TGTX, XX.TGTY, XX.FI
l-—->XX, XX.FIXY, XX.HEADING, XX .COUNTDOWN, XX.CONTFIX, XX.C
-=-=>ROSSCHECK, XX.ZONE, XX.SPEED, XX .AIDON, XX .SPARE

SUB GETXXB (FILENO%, NEOFMRG)
GUB GETXXB (FILENOS, NEOFMRG)

ETITITIL 2L

'Purpose. .. .. e eserssenn \ Reads a record from the appropriate £il
~---->a into DTEMP1

'parameters. ... ..o \ FILENO%, XX() AS FIXCOMB, N

'Other input data....... \

'Input files..........-: \ FILEMRGS

'output files........--- \

10ther ocutput data...... \ DTEMP1

'Function calls.......-. \

' gubroutine calls.......\

‘Comments. .. .o \ This makes it easier to modify record £

-——=20rm.
FTITIIELLL

'Read the array DTEMP1 from a record on the FILEMRGS file.

SHARED DTEMPL1 AS FIXCOMB

INPUT #FILENOSN, DTEMP1 . TGTTYPEN, DTEMP1. TGTTYPEC, DTEMP1 . FIXLNGTH
---->, DTEMP1. PUPDIAM

INPUT #FILENON, DTEMP1.TGTID, DTEMP1 . DISTANCE, DTEMP1 . FRAMENO, DT
---->EMP1.TGTX

INPUT #FILENOS, DTEMP1.TGTY, DTEMP1 . FIXX, DTEMP1.FIXY, DTEMP1.HEA
~-~--=>DING

INPUT #FILENOSN, DTEMP1 . COUNTDOWN, DTEMP1 . CONTFIX, DTEMP1 . CROSSCHE
---->CK, DTEMPl. ZONE

INPUT #FILENOS, DTEMP1.8PEED, DTEMP1 .AIDON, DTEMP1 . SPARE

IF EOF (FILENOS) THEN NEOFMRG = 1

P N N L L D R L

END SUB ' GETXXB
SUB YESORNO (AS, BS)
FITIIILLL L

TPUZPOB®. . ¢ vaoser st ” \



'PArameters. .. .. ..o \
'Other input data.......\
‘Input files.......... oo\
1output £1108....c0cr0eoe\
10ther output data...... \
‘Function calls......... \
rgubroutine calls....... \
1Comment®. . ccreecraesnon \
YY1 ]
PRINT AS
DO
INPUT " YES or NO ?2?2?", c$
d$ = LEFT$ (UCASES (CS), 1)
LOOP UNTIL d$ = "Y" OR d§ = "N"

C-117



form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Dauis Highway. Suite 1204, Arlington, VA 22202-4302. and 10 tne Otfice of Management and Buaget. Paperwark Reduction Project (0704-0188), Washington, DC 20503.

Pudiic repoOrting purden tor this collection of InTormation (s estimated to daverage | hour per response, inctuding the time tor reviewing instructions, searcning existing gata sources,
gatnering ang mainmaining the aata neeged, and compietng ana reviewing the collection of information. Send comments re. arding this burden estimate or any Other aspect of this
cohection ot intarmation, ncluding suggestions tor reducing this burgen. to Washington Headauarters Services, Directorate for tnformation Operauons and Reports, 1215 Jefterson

1. AGENCY USE ONLY (Leave blank) }2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1993 Contractor Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Techniques Used for the Analysis of Oculometer
Eye-Scanning Data Obtained from an Air Traffic C NAS1-19000
Control Display
8. AUTHOR(S) WU 505-64-13-01

Daniel J. Crawford, Daniel W. Burdette, and
William R. Capron

7. PERFCRMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Lockheed Engineering & Sciences Company REPORT NUMBER
Langley Program Office
144 Research Drive, Hampton, VA 23666

$. SPONSORING / MONITORING AGENCY NAME(S}) AND ADDRESS(ES) 10. SPONSORING / MONITORING

s . s . AGENCY REPORT NUMBER
National Aeronautics and Space Administration

Langley Research Center NASA CR-191559
Hampton, VA 23681-0001

1. SUPPLEMENTARY NOTES

Langley Task Monitor: Leonard Credeur

12z. DISTRIBUTION 'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 04

13. ABSTRACT (Maximum 200 words)

look-point position data from a real-time ATC display-format comparison

lookpoint position data were collected, associated with gaze objects (e.g.,

The equipment involved and algorithms for saving, synchronizing with the ATC
simulation output, and filtering the data are described. Target (gaze object)
and cross-check scanning identification algorithms are also presented. Data
tables are provided of total dwell times, average dwell times, and cross-check
scans. Flow charts, block diagrams, file record descriptors, and source code
are included. The techniques and data presented are intended to benefit
researchers in other studies that incorporate non-stationary gaze objects and
oculometer equipment.

This report documents the methodology and techniques used to collect and analyze

experiment. That study compared the delivery precision and controller workload of
three final approach spacing aid display formats. Using an oculometer, controller

moving aircraft) on the ATC display, and analyzed to determine eye~-scan behavior.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Eye-scan behavior 186
Oculometer 16. PRICE CODE
. AQ9
______________________._____._.______......__...____.___._..__.._.q
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 23918
298-102



